

Trax Tutorials

Introductory Notebooks

	Trax Quick Intro
	1. Run a pre-trained Transformer

	2. Features and resources

	3. Walkthrough

	Trax Layers Intro
	1. Layers

	2. Inputs and Outputs

	3. Defining New Layer Classes

	4. Testing and Debugging Layer Classes

	Using Trax with TensorFlow NumPy and Keras
	1. Trax with TensorFlow NumPy

	2. Convert Trax to Keras

	3. Exporting Trax Models for Deployment

Trax API

Packages/modules

	trax.*
	fastmath.*

	layers.*

	models.*

	data.*

	optimizers.*

	supervised.*

	rl.*

	shapes

	trainer

	rl_trainer

	trax2keras

Indices and Tables

	Index

	Module Index

	Search Page

Trax Quick Intro

Trax [https://trax-ml.readthedocs.io/en/latest/] is an end-to-end library for deep learning that focuses on clear code and speed. It is actively used and maintained in the Google Brain team [https://research.google.com/teams/brain/]. This notebook (run it in colab [https://colab.research.google.com/github/google/trax/blob/master/trax/intro.ipynb]) shows how to use Trax and where you can find more information.

	Run a pre-trained Transformer: create a translator in a few lines of code

	Features and resources: API docs [https://trax-ml.readthedocs.io/en/latest/trax.html], where to talk to us [https://gitter.im/trax-ml/community], how to open an issue [https://github.com/google/trax/issues] and more

	Walkthrough: how Trax works, how to make new models and train on your own data

We welcome contributions to Trax! We welcome PRs with code for new models and layers as well as improvements to our code and documentation. We especially love notebooks that explain how models work and show how to use them to solve problems!

General Setup

Execute the following few cells (once) before running any of the code samples.

[1]:

#@title
Copyright 2020 Google LLC.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

import os
import numpy as np

[2]:

#@title
Import Trax

!pip install -q -U trax
import trax

/bin/sh: pip: command not found

1. Run a pre-trained Transformer

Here is how you create an Engligh-German translator in a few lines of code:

	create a Transformer model in Trax with trax.models.Transformer [https://trax-ml.readthedocs.io/en/latest/trax.models.html#trax.models.transformer.Transformer]

	initialize it from a file with pre-trained weights with model.init_from_file [https://trax-ml.readthedocs.io/en/latest/trax.layers.html#trax.layers.base.Layer.init_from_file]

	tokenize your input sentence to input into the model with trax.data.tokenize [https://trax-ml.readthedocs.io/en/latest/trax.data.html#trax.data.tf_inputs.tokenize]

	decode from the Transformer with trax.supervised.decoding.autoregressive_sample [https://trax-ml.readthedocs.io/en/latest/trax.supervised.html#trax.supervised.decoding.autoregressive_sample]

	de-tokenize the decoded result to get the translation with trax.data.detokenize [https://trax-ml.readthedocs.io/en/latest/trax.data.html#trax.data.tf_inputs.detokenize]

[3]:

Create a Transformer model.
Pre-trained model config in gs://trax-ml/models/translation/ende_wmt32k.gin
model = trax.models.Transformer(
 input_vocab_size=33300,
 d_model=512, d_ff=2048,
 n_heads=8, n_encoder_layers=6, n_decoder_layers=6,
 max_len=2048, mode='predict')

Initialize using pre-trained weights.
model.init_from_file('gs://trax-ml/models/translation/ende_wmt32k.pkl.gz',
 weights_only=True)

Tokenize a sentence.
sentence = 'It is nice to learn new things today!'
tokenized = list(trax.data.tokenize(iter([sentence]), # Operates on streams.
 vocab_dir='gs://trax-ml/vocabs/',
 vocab_file='ende_32k.subword'))[0]

Decode from the Transformer.
tokenized = tokenized[None, :] # Add batch dimension.
tokenized_translation = trax.supervised.decoding.autoregressive_sample(
 model, tokenized, temperature=0.0) # Higher temperature: more diverse results.

De-tokenize,
tokenized_translation = tokenized_translation[0][:-1] # Remove batch and EOS.
translation = trax.data.detokenize(tokenized_translation,
 vocab_dir='gs://trax-ml/vocabs/',
 vocab_file='ende_32k.subword')
print(translation)

Es ist schön, heute neue Dinge zu lernen!

2. Features and resources

Trax includes basic models (like ResNet [https://github.com/google/trax/blob/master/trax/models/resnet.py#L70], LSTM [https://github.com/google/trax/blob/master/trax/models/rnn.py#L100], Transformer [https://github.com/google/trax/blob/master/trax/models/transformer.py#L189] and RL algorithms (like REINFORCE [https://github.com/google/trax/blob/master/trax/rl/training.py#L244], A2C [https://github.com/google/trax/blob/master/trax/rl/actor_critic_joint.py#L458],
PPO [https://github.com/google/trax/blob/master/trax/rl/actor_critic_joint.py#L209]). It is also actively used for research and includes new models like the Reformer [https://github.com/google/trax/tree/master/trax/models/reformer] and new RL algorithms like AWR [https://arxiv.org/abs/1910.00177]. Trax has bindings to a large number of deep learning datasets, including Tensor2Tensor [https://github.com/tensorflow/tensor2tensor] and TensorFlow
datasets [https://www.tensorflow.org/datasets/catalog/overview].

You can use Trax either as a library from your own python scripts and notebooks or as a binary from the shell, which can be more convenient for training large models. It runs without any changes on CPUs, GPUs and TPUs.

	API docs [https://trax-ml.readthedocs.io/en/latest/]

	chat with us [https://gitter.im/trax-ml/community]

	open an issue [https://github.com/google/trax/issues]

	subscribe to trax-discuss [https://groups.google.com/u/1/g/trax-discuss] for news

3. Walkthrough

You can learn here how Trax works, how to create new models and how to train them on your own data.

Tensors and Fast Math

The basic units flowing through Trax models are tensors - multi-dimensional arrays, sometimes also known as numpy arrays, due to the most widely used package for tensor operations – numpy. You should take a look at the numpy guide [https://numpy.org/doc/stable/user/quickstart.html] if you don’t know how to operate on tensors: Trax also uses the numpy API for that.

In Trax we want numpy operations to run very fast, making use of GPUs and TPUs to accelerate them. We also want to automatically compute gradients of functions on tensors. This is done in the trax.fastmath package thanks to its backends – JAX [https://github.com/google/jax] and TensorFlow numpy [https://tensorflow.org].

[4]:

from trax.fastmath import numpy as fastnp
trax.fastmath.use_backend('jax') # Can be 'jax' or 'tensorflow-numpy'.

matrix = fastnp.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(f'matrix =\n{matrix}')
vector = fastnp.ones(3)
print(f'vector = {vector}')
product = fastnp.dot(vector, matrix)
print(f'product = {product}')
tanh = fastnp.tanh(product)
print(f'tanh(product) = {tanh}')

matrix =
[[1 2 3]
 [4 5 6]
 [7 8 9]]
vector = [1. 1. 1.]
product = [12. 15. 18.]
tanh(product) = [0.99999994 0.99999994 0.99999994]

Gradients can be calculated using trax.fastmath.grad.

[5]:

def f(x):
 return 2.0 * x * x

grad_f = trax.fastmath.grad(f)

print(f'grad(2x^2) at 1 = {grad_f(1.0)}')
print(f'grad(2x^2) at -2 = {grad_f(-2.0)}')

grad(2x^2) at 1 = 4.0
grad(2x^2) at -2 = -8.0

Layers

Layers are basic building blocks of Trax models. You will learn all about them in the layers intro [https://trax-ml.readthedocs.io/en/latest/notebooks/layers_intro.html] but for now, just take a look at the implementation of one core Trax layer, Embedding:

class Embedding(base.Layer):
 """Trainable layer that maps discrete tokens/IDs to vectors."""

 def __init__(self,
 vocab_size,
 d_feature,
 kernel_initializer=init.RandomNormalInitializer(1.0)):
 """Returns an embedding layer with given vocabulary size and vector size.

 Args:
 vocab_size: Size of the input vocabulary. The layer will assign a unique
 vector to each id in `range(vocab_size)`.
 d_feature: Dimensionality/depth of the output vectors.
 kernel_initializer: Function that creates (random) initial vectors for
 the embedding.
 """
 super().__init__(name=f'Embedding_{vocab_size}_{d_feature}')
 self._d_feature = d_feature # feature dimensionality
 self._vocab_size = vocab_size
 self._kernel_initializer = kernel_initializer

 def forward(self, x):
 """Returns embedding vectors corresponding to input token IDs.

 Args:
 x: Tensor of token IDs.

 Returns:
 Tensor of embedding vectors.
 """
 return jnp.take(self.weights, x, axis=0, mode='clip')

 def init_weights_and_state(self, input_signature):
 """Randomly initializes this layer's weights."""
 del input_signature
 shape_w = (self._vocab_size, self._d_feature)
 w = self._kernel_initializer(shape_w, self.rng)
 self.weights = w

Layers with trainable weights like Embedding need to be initialized with the signature (shape and dtype) of the input, and then can be run by calling them.

[6]:

from trax import layers as tl

Create an input tensor x.
x = np.arange(15)
print(f'x = {x}')

Create the embedding layer.
embedding = tl.Embedding(vocab_size=20, d_feature=32)
embedding.init(trax.shapes.signature(x))

Run the layer -- y = embedding(x).
y = embedding(x)
print(f'shape of y = {y.shape}')

x = [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]
shape of y = (15, 32)

Models

Models in Trax are built from layers most often using the Serial and Branch combinators. You can read more about those combinators in the layers intro [https://trax-ml.readthedocs.io/en/latest/notebooks/layers_intro.html] and see the code for many models in trax/models/, e.g., this is how the Transformer Language Model [https://github.com/google/trax/blob/master/trax/models/transformer.py#L167] is implemented. Below is an example of how to build a sentiment classification
model.

[7]:

model = tl.Serial(
 tl.Embedding(vocab_size=8192, d_feature=256),
 tl.Mean(axis=1), # Average on axis 1 (length of sentence).
 tl.Dense(2), # Classify 2 classes.
)

You can print model structure.
print(model)

Serial[
 Embedding_8192_256
 Mean
 Dense_2
]

Data

To train your model, you need data. In Trax, data streams are represented as python iterators, so you can call next(data_stream) and get a tuple, e.g., (inputs, targets). Trax allows you to use TensorFlow Datasets [https://www.tensorflow.org/datasets] easily and you can also get an iterator from your own text file using the standard open('my_file.txt').

[8]:

train_stream = trax.data.TFDS('imdb_reviews', keys=('text', 'label'), train=True)()
eval_stream = trax.data.TFDS('imdb_reviews', keys=('text', 'label'), train=False)()
print(next(train_stream)) # See one example.

(b"This was an absolutely terrible movie. Don't be lured in by Christopher Walken or Michael Ironside. Both are great actors, but this must simply be their worst role in history. Even their great acting could not redeem this movie's ridiculous storyline. This movie is an early nineties US propaganda piece. The most pathetic scenes were those when the Columbian rebels were making their cases for revolutions. Maria Conchita Alonso appeared phony, and her pseudo-love affair with Walken was nothing but a pathetic emotional plug in a movie that was devoid of any real meaning. I am disappointed that there are movies like this, ruining actor's like Christopher Walken's good name. I could barely sit through it.", 0)

Using the trax.data module you can create input processing pipelines, e.g., to tokenize and shuffle your data. You create data pipelines using trax.data.Serial and they are functions that you apply to streams to create processed streams.

[9]:

data_pipeline = trax.data.Serial(
 trax.data.Tokenize(vocab_file='en_8k.subword', keys=[0]),
 trax.data.Shuffle(),
 trax.data.FilterByLength(max_length=2048, length_keys=[0]),
 trax.data.BucketByLength(boundaries=[32, 128, 512, 2048],
 batch_sizes=[512, 128, 32, 8, 1],
 length_keys=[0]),
 trax.data.AddLossWeights()
)
train_batches_stream = data_pipeline(train_stream)
eval_batches_stream = data_pipeline(eval_stream)
example_batch = next(train_batches_stream)
print(f'shapes = {[x.shape for x in example_batch]}') # Check the shapes.

shapes = [(8, 2048), (8,), (8,)]

Supervised training

When you have the model and the data, use trax.supervised.training to define training and eval tasks and create a training loop. The Trax training loop optimizes training and will create TensorBoard logs and model checkpoints for you.

[10]:

from trax.supervised import training

Training task.
train_task = training.TrainTask(
 labeled_data=train_batches_stream,
 loss_layer=tl.WeightedCategoryCrossEntropy(),
 optimizer=trax.optimizers.Adam(0.01),
 n_steps_per_checkpoint=500,
)

Evaluaton task.
eval_task = training.EvalTask(
 labeled_data=eval_batches_stream,
 metrics=[tl.WeightedCategoryCrossEntropy(), tl.WeightedCategoryAccuracy()],
 n_eval_batches=20 # For less variance in eval numbers.
)

Training loop saves checkpoints to output_dir.
output_dir = os.path.expanduser('~/output_dir/')
!rm -rf {output_dir}
training_loop = training.Loop(model,
 train_task,
 eval_tasks=[eval_task],
 output_dir=output_dir)

Run 2000 steps (batches).
training_loop.run(2000)

Step 1: Total number of trainable weights: 2097666
Step 1: Ran 1 train steps in 1.15 secs
Step 1: train WeightedCategoryCrossEntropy | 0.69192106
Step 1: eval WeightedCategoryCrossEntropy | 0.69349981
Step 1: eval WeightedCategoryAccuracy | 0.50312500

Step 500: Ran 499 train steps in 10.62 secs
Step 500: train WeightedCategoryCrossEntropy | 0.50712883
Step 500: eval WeightedCategoryCrossEntropy | 0.42969493
Step 500: eval WeightedCategoryAccuracy | 0.81406250

Step 1000: Ran 500 train steps in 8.89 secs
Step 1000: train WeightedCategoryCrossEntropy | 0.35916388
Step 1000: eval WeightedCategoryCrossEntropy | 0.41775789
Step 1000: eval WeightedCategoryAccuracy | 0.79531250

Step 1500: Ran 500 train steps in 9.13 secs
Step 1500: train WeightedCategoryCrossEntropy | 0.35241464
Step 1500: eval WeightedCategoryCrossEntropy | 0.35194683
Step 1500: eval WeightedCategoryAccuracy | 0.85117188

Step 2000: Ran 500 train steps in 8.54 secs
Step 2000: train WeightedCategoryCrossEntropy | 0.29129386
Step 2000: eval WeightedCategoryCrossEntropy | 0.37591279
Step 2000: eval WeightedCategoryAccuracy | 0.84062500

After training the model, run it like any layer to get results.

[11]:

example_input = next(eval_batches_stream)[0][0]
example_input_str = trax.data.detokenize(example_input, vocab_file='en_8k.subword')
print(f'example input_str: {example_input_str}')
sentiment_log_probs = model(example_input[None, :]) # Add batch dimension.
print(f'Model returned sentiment probabilities: {np.exp(sentiment_log_probs)}')

example input_str: There are a few aspects to Park's movies, and in particular Wallace & Gromit, that I would say make them so great. The first is subtlety and observation, the flagship of which is the character of Gromit. He doesn't speak, he doesn't make any noise, all he has are his eyes, brow, and body posture, and with these he commands the film. Park manages to give us everything we need from this silent character through his expression. The comedy and the emotion is conveyed through the subtlest of movements and it works superbly well.

Watching the movie you have to be aware of the entire screen. Normally you'll be guided to things in the movies, the screen won't be cluttered too much, there won't be many things to take your eyes away from the main clue or action. Park seems to need to look the other way with his movies. He throws extra content at his audience, there's action in the background, to the side of the screen, even off screen, and there's just about always something in the foreground to catch your eye. His movies are about multiple viewing and discovery, they're layered with jokes and ancillary action.

Throughout this film there are layers of things happening on screen, jokes in the foreground maybe on a jar label and background shadows that give away action. You can imagine that for Park the movies has always been an event, and the movies he loves are ones which he wants to watch again and again. This is what shows in his movies, and in through his most beloved characters.

Then there are the bizarre and wacky inventions which Wallace make, something which is reflected in the storyline and the twists and turns of the plot, everything is bizarre and off the wall, yet it seems so perfectly normal in this world. You can imagine that inside Park is the mind of Wallace.

There's also one more thing that make these movies so unique, and that's the modelling and precise hand animation. I must admit I was concerned when I knew Dreamworks was involved in the making of this movie, and I thought that they would bring their computer animation experience to the forefront. What I was scared of was Wallace & Gromit becoming CGI entities, or at the smallest, CGI being used to clean up the feel that the modelling brought to the movie.

Not so. You can still see thumbprints and toolmarks on the characters, and far from distracting from the movie, this just adds so much real feeling to it and a feeling of physical depth to the characters and the scene on screen.

So what of the movie? Well I must say that the plot twist was something I had thought about well before the film was in the cinema and it came as no surprise, but that did not affect my enjoyment one little bit. Actually watching the twist unfold and the comic timing of the discovery and reactions was everything, and it had me just as sucked in as if it was a thriller, yet all the time I was laughing.

Watching the movie was fascinating in various ways. To see the animation completed, how wild the inventions are, how Wallace is going to get into trouble and Gromit get him out, where all the cross references are in the movie, and where all the jokes are! I must admit afterwards talking with my friends I couldn't believe how much I had missed.

There's something different in this movie than with the others, there's a new level of adult humour in here, and I don't mean rude jokes (although there are a couple that are just so British you can't help laughing), I mean jokes that simply fly over kids heads but slap adults in the face. The kind you are used to seeing come out of somewhere like Pixar. This just adds even more appeal to the movie.

Okay though, let me try and be a bit negative here. I didn't notice the voices in this movie, you know how you usually listen to the actors and see if you can recognise them? Well I was just too wrapped up in the movie to care or to notice who they were...okay, that's not negative. Let me try again. The main plot wasn't as strong and gripping as I'd expected, and I found myself being caught up in the side stories and the characters themselves...again...that's not a bad thing, the film was just so much rich entertainment.

I honestly can't think of a bad thing to say about this movie, probably the worst thing I could say is that the title sequence at the end is quite repetitive...until the final title! Really, that's the worst I can say.

The story is a lot of fun, well set-up, well written, well executed. There's lot's of fantastic characters in here, not just Wallace & Gromit. There's so much happening on screen, so many references and jokes (check out the dresses of Lady Tottingham), cheese jokes everywhere, jokes for all the family. The characters are superbly absorbing and you'll find that you've taken to them before you realise. There's just so much in this movie for everyone.

There's so much I could say and write about, but I know it will quickly turn into a backslapping exercise for Park and Aardman, it would also just turn into a series of "this bit was really funny" and "there's a bit when...", and what I would rather do is tell you that this is a superb movie, to go see it, and to experience the whole thing for yourselves. I will say though that the bunnies are excellent!<pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>
Model returned sentiment probabilities: [[0.36765265 2.7904649]]

Trax Layers Intro

This notebook introduces the core concepts of the Trax library through a series of code samples and explanations. The topics covered in following sections are:

	Layers: the basic building blocks and how to combine them

	Inputs and Outputs: how data streams flow through layers

	Defining New Layer Classes (if combining existing layers isn’t enough)

	Testing and Debugging Layer Classes

General Setup

Execute the following few cells (once) before running any of the code samples in this notebook.

[]:

Copyright 2018 Google LLC.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

import numpy as np

[]:

Import Trax

! pip install -q -U trax
! pip install -q tensorflow

from trax import fastmath
from trax import layers as tl
from trax import shapes
from trax.fastmath import numpy as jnp # For use in defining new layer types.
from trax.shapes import ShapeDtype
from trax.shapes import signature

/bin/sh: pip: command not found
/bin/sh: pip: command not found

[]:

Settings and utilities for handling inputs, outputs, and object properties.

np.set_printoptions(precision=3) # Reduce visual noise from extra digits.

def show_layer_properties(layer_obj, layer_name):
 template = ('{}.n_in: {}\n'
 '{}.n_out: {}\n'
 '{}.sublayers: {}\n'
 '{}.weights: {}\n')
 print(template.format(layer_name, layer_obj.n_in,
 layer_name, layer_obj.n_out,
 layer_name, layer_obj.sublayers,
 layer_name, layer_obj.weights))

1. Layers

The Layer class represents Trax’s basic building blocks:

class Layer:
 """Base class for composable layers in a deep learning network.

 Layers are the basic building blocks for deep learning models. A Trax layer
 computes a function from zero or more inputs to zero or more outputs,
 optionally using trainable weights (common) and non-parameter state (not
 common). ...

 ...

Layers compute functions.

A layer computes a function from zero or more inputs to zero or more outputs. The inputs and outputs are NumPy arrays or JAX objects behaving as NumPy arrays.

The simplest layers, those with no weights or sublayers, can be used without initialization. You can think of them as (pure) mathematical functions that can be plugged into neural networks.

For ease of testing and interactive exploration, layer objects implement the __call__ method, so you can call them directly on input data:

y = my_layer(x)

Layers are also objects, so you can inspect their properties. For example:

print(f'Number of inputs expected by this layer: {my_layer.n_in}')

Example 1. tl.Relu \([n_{in} = 1, n_{out} = 1]\)

[]:

relu = tl.Relu()

x = np.array([[-2, -1, 0, 1, 2],
 [-20, -10, 0, 10, 20]])
y = relu(x)

Show input, output, and two layer properties.
print(f'x:\n{x}\n\n'
 f'relu(x):\n{y}\n\n'
 f'Number of inputs expected by this layer: {relu.n_in}\n'
 f'Number of outputs promised by this layer: {relu.n_out}')

x:
[[-2 -1 0 1 2]
 [-20 -10 0 10 20]]

relu(x):
[[0 0 0 1 2]
 [0 0 0 10 20]]

Number of inputs expected by this layer: 1
Number of outputs promised by this layer: 1

Example 2. tl.Concatenate \([n_{in} = 2, n_{out} = 1]\)

[]:

concat = tl.Concatenate()

x0 = np.array([[1, 2, 3],
 [4, 5, 6]])
x1 = np.array([[10, 20, 30],
 [40, 50, 60]])
y = concat([x0, x1])

print(f'x0:\n{x0}\n\n'
 f'x1:\n{x1}\n\n'
 f'concat([x1, x2]):\n{y}\n\n'
 f'Number of inputs expected by this layer: {concat.n_in}\n'
 f'Number of outputs promised by this layer: {concat.n_out}')

x0:
[[1 2 3]
 [4 5 6]]

x1:
[[10 20 30]
 [40 50 60]]

concat([x1, x2]):
[[1 2 3 10 20 30]
 [4 5 6 40 50 60]]

Number of inputs expected by this layer: 2
Number of outputs promised by this layer: 1

Layers are configurable.

Many layer types have creation-time parameters for flexibility. The Concatenate layer type, for instance, has two optional parameters:

	axis: index of axis along which to concatenate the tensors; default value of -1 means to use the last axis.

	n_items: number of tensors to join into one by concatenation; default value is 2.

The following example shows Concatenate configured for 3 input tensors, and concatenation along the initial \((0^{th})\) axis.

Example 3. tl.Concatenate(n_items=3, axis=0)

[]:

concat3 = tl.Concatenate(n_items=3, axis=0)

x0 = np.array([[1, 2, 3],
 [4, 5, 6]])
x1 = np.array([[10, 20, 30],
 [40, 50, 60]])
x2 = np.array([[100, 200, 300],
 [400, 500, 600]])

y = concat3([x0, x1, x2])

print(f'x0:\n{x0}\n\n'
 f'x1:\n{x1}\n\n'
 f'x2:\n{x2}\n\n'
 f'concat3([x0, x1, x2]):\n{y}')

x0:
[[1 2 3]
 [4 5 6]]

x1:
[[10 20 30]
 [40 50 60]]

x2:
[[100 200 300]
 [400 500 600]]

concat3([x0, x1, x2]):
[[1 2 3]
 [4 5 6]
 [10 20 30]
 [40 50 60]
 [100 200 300]
 [400 500 600]]

Layers are trainable.

Many layer types include weights that affect the computation of outputs from inputs, and they use back-progagated gradients to update those weights.

🚧🚧 A very small subset of layer types, such as ``BatchNorm``, also include modifiable weights (called ``state``) that are updated based on forward-pass inputs/computation rather than back-propagated gradients.

Initialization

Trainable layers must be initialized before use. Trax can take care of this as part of the overall training process. In other settings (e.g., in tests or interactively in a Colab notebook), you need to initialize the outermost/topmost layer explicitly. For this, use init:

def init(self, input_signature, rng=None, use_cache=False):
 """Initializes weights/state of this layer and its sublayers recursively.

 Initialization creates layer weights and state, for layers that use them.
 It derives the necessary array shapes and data types from the layer's input
 signature, which is itself just shape and data type information.

 For layers without weights or state, this method safely does nothing.

 This method is designed to create weights/state only once for each layer
 instance, even if the same layer instance occurs in multiple places in the
 network. This enables weight sharing to be implemented as layer sharing.

 Args:
 input_signature: `ShapeDtype` instance (if this layer takes one input)
 or list/tuple of `ShapeDtype` instances.
 rng: Single-use random number generator (JAX PRNG key), or `None`;
 if `None`, use a default computed from an integer 0 seed.
 use_cache: If `True`, and if this layer instance has already been
 initialized elsewhere in the network, then return special marker
 values -- tuple `(GET_WEIGHTS_FROM_CACHE, GET_STATE_FROM_CACHE)`.
 Else return this layer's newly initialized weights and state.

 Returns:
 A `(weights, state)` tuple.
 """

Input signatures can be built from scratch using ShapeDType objects, or can be derived from data via the signature function (in module shapes):

def signature(obj):
 """Returns a `ShapeDtype` signature for the given `obj`.

 A signature is either a `ShapeDtype` instance or a tuple of `ShapeDtype`
 instances. Note that this function is permissive with respect to its inputs
 (accepts lists or tuples or dicts, and underlying objects can be any type
 as long as they have shape and dtype attributes) and returns the corresponding
 nested structure of `ShapeDtype`.

 Args:
 obj: An object that has `shape` and `dtype` attributes, or a list/tuple/dict
 of such objects.

 Returns:
 A corresponding nested structure of `ShapeDtype` instances.
 """

Example 4. tl.LayerNorm \([n_{in} = 1, n_{out} = 1]\)

[]:

layer_norm = tl.LayerNorm()

x = np.array([[-2, -1, 0, 1, 2],
 [1, 2, 3, 4, 5],
 [10, 20, 30, 40, 50]]).astype(np.float32)
layer_norm.init(shapes.signature(x))

y = layer_norm(x)

print(f'x:\n{x}\n\n'
 f'layer_norm(x):\n{y}\n')
print(f'layer_norm.weights:\n{layer_norm.weights}')

x:
[[-2. -1. 0. 1. 2.]
 [1. 2. 3. 4. 5.]
 [10. 20. 30. 40. 50.]]

layer_norm(x):
[[-1.414 -0.707 0. 0.707 1.414]
 [-1.414 -0.707 0. 0.707 1.414]
 [-1.414 -0.707 0. 0.707 1.414]]

layer_norm.weights:
(DeviceArray([1., 1., 1., 1., 1.], dtype=float32), DeviceArray([0., 0., 0., 0., 0.], dtype=float32))

Layers combine into layers.

The Trax library authors encourage users to build networks and network components as combinations of existing layers, by means of a small set of combinator layers. A combinator makes a list of layers behave as a single layer – by combining the sublayer computations yet looking from the outside like any other layer. The combined layer, like other layers, can:

	compute outputs from inputs,

	update parameters from gradients, and

	combine with yet more layers.

Combine with ``Serial``

The most common way to combine layers is with the Serial combinator:

class Serial(base.Layer):
 """Combinator that applies layers serially (by function composition).

 This combinator is commonly used to construct deep networks, e.g., like this::

 mlp = tl.Serial(
 tl.Dense(128),
 tl.Relu(),
 tl.Dense(10),
)

 A Serial combinator uses stack semantics to manage data for its sublayers.
 Each sublayer sees only the inputs it needs and returns only the outputs it
 has generated. The sublayers interact via the data stack. For instance, a
 sublayer k, following sublayer j, gets called with the data stack in the
 state left after layer j has applied. The Serial combinator then:

 - takes n_in items off the top of the stack (n_in = k.n_in) and calls
 layer k, passing those items as arguments; and

 - takes layer k's n_out return values (n_out = k.n_out) and pushes
 them onto the data stack.

 A Serial instance with no sublayers acts as a special-case (but useful)
 1-input 1-output no-op.
 """

If one layer has the same number of outputs as the next layer has inputs (which is the usual case), the successive layers behave like function composition:

h(.) = g(f(.))
layer_h = Serial(
 layer_f,
 layer_g,
)

Note how, inside Serial, function composition is expressed naturally as a succession of operations, so that no nested parentheses are needed.

Example 5. y = layer_norm(relu(x)) \([n_{in} = 1, n_{out} = 1]\)

[]:

layer_block = tl.Serial(
 tl.Relu(),
 tl.LayerNorm(),
)

x = np.array([[-2, -1, 0, 1, 2],
 [-20, -10, 0, 10, 20]]).astype(np.float32)
layer_block.init(shapes.signature(x))
y = layer_block(x)

print(f'x:\n{x}\n\n'
 f'layer_block(x):\n{y}')

x:
[[-2. -1. 0. 1. 2.]
 [-20. -10. 0. 10. 20.]]

layer_block(x):
[[-0.75 -0.75 -0.75 0.5 1.75]
 [-0.75 -0.75 -0.75 0.5 1.75]]

And we can inspect the block as a whole, as if it were just another layer:

Example 5’. Inspecting a Serial layer.

[]:

print(f'layer_block: {layer_block}\n\n'
 f'layer_block.weights: {layer_block.weights}')

layer_block: Serial[
 Relu
 LayerNorm
]

layer_block.weights: ((), (DeviceArray([1., 1., 1., 1., 1.], dtype=float32), DeviceArray([0., 0., 0., 0., 0.], dtype=float32)))

Combine with ``Branch``

The Branch combinator arranges layers into parallel computational channels:

def Branch(*layers, name='Branch'):
 """Combinator that applies a list of layers in parallel to copies of inputs.

 Each layer in the input list is applied to as many inputs from the stack
 as it needs, and their outputs are successively combined on stack.

 For example, suppose one has three layers:

 - F: 1 input, 1 output
 - G: 3 inputs, 1 output
 - H: 2 inputs, 2 outputs (h1, h2)

 Then Branch(F, G, H) will take 3 inputs and give 4 outputs:

 - inputs: a, b, c
 - outputs: F(a), G(a, b, c), h1, h2 where h1, h2 = H(a, b)

 As an important special case, a None argument to Branch acts as if it takes
 one argument, which it leaves unchanged. (It acts as a one-arg no-op.)

 Args:
 *layers: List of layers.
 name: Descriptive name for this layer.

 Returns:
 A branch layer built from the given sublayers.
 """

Residual blocks, for example, are implemented using Branch:

def Residual(*layers, shortcut=None):
 """Wraps a series of layers with a residual connection.

 Args:
 *layers: One or more layers, to be applied in series.
 shortcut: If None (the usual case), the Residual layer computes the
 element-wise sum of the stack-top input with the output of the layer
 series. If specified, the `shortcut` layer applies to a copy of the
 inputs and (elementwise) adds its output to the output from the main
 layer series.

 Returns:
 A layer representing a residual connection paired with a layer series.
 """
 layers = _ensure_flat(layers)
 layer = layers[0] if len(layers) == 1 else Serial(layers)
 return Serial(
 Branch(shortcut, layer),
 Add(),
)

Here’s a simple code example to highlight the mechanics.

Example 6. Branch

[]:

relu = tl.Relu()
times_100 = tl.Fn("Times100", lambda x: x * 100.0)
branch_relu_t100 = tl.Branch(relu, times_100)

x = np.array([[-2, -1, 0, 1, 2],
 [-20, -10, 0, 10, 20]])
branch_relu_t100.init(shapes.signature(x))

y0, y1 = branch_relu_t100(x)

print(f'x:\n{x}\n\n'
 f'y0:\n{y0}\n\n'
 f'y1:\n{y1}')

x:
[[-2 -1 0 1 2]
 [-20 -10 0 10 20]]

y0:
[[0 0 0 1 2]
 [0 0 0 10 20]]

y1:
[[-200. -100. 0. 100. 200.]
 [-2000. -1000. 0. 1000. 2000.]]

2. Inputs and Outputs

Trax allows layers to have multiple input streams and output streams. When designing a network, you have the flexibility to use layers that:

	process a single data stream (\(n_{in} = n_{out} = 1\)),

	process multiple parallel data streams ($n_{in} = n_{out} = 2, 3, … $),

	split or inject data streams (\(n_{in} < n_{out}\)), or

	merge or remove data streams (\(n_{in} > n_{out}\)).

We saw in section 1 the example of Residual, which involves both a split and a merge:

...
return Serial(
 Branch(shortcut, layer),
 Add(),
)

In other words, layer by layer:

	Branch(shortcut, layers): makes two copies of the single incoming data stream, passes one copy via the shortcut (typically a no-op), and processes the other copy via the given layers (applied in series). [\(n_{in} = 1\), \(n_{out} = 2\)]

	Add(): combines the two streams back into one by adding two tensors elementwise. [\(n_{in} = 2\), \(n_{out} = 1\)]

Data Stack

Trax supports flexible data flows through a network via a data stack, which is managed by the Serial combinator:

class Serial(base.Layer):
 """Combinator that applies layers serially (by function composition).

 ...

 A Serial combinator uses stack semantics to manage data for its sublayers.
 Each sublayer sees only the inputs it needs and returns only the outputs it
 has generated. The sublayers interact via the data stack. For instance, a
 sublayer k, following sublayer j, gets called with the data stack in the
 state left after layer j has applied. The Serial combinator then:

 - takes n_in items off the top of the stack (n_in = k.n_in) and calls
 layer k, passing those items as arguments; and

 - takes layer k's n_out return values (n_out = k.n_out) and pushes
 them onto the data stack.

 ...

 """

Simple Case 1 – Each layer takes one input and has one output.

This is in effect a single data stream pipeline, and the successive layers behave like function composition:

s(.) = h(g(f(.)))
layer_s = Serial(
 layer_f,
 layer_g,
 layer_h,
)

Note how, inside Serial, function composition is expressed naturally as a succession of operations, so that no nested parentheses are needed and the order of operations matches the textual order of layers.

Simple Case 2 – Each layer consumes all outputs of the preceding layer.

This is still a single pipeline, but data streams internal to it can split and merge. The Residual example above illustrates this kind.

General Case – Successive layers interact via the data stack.

As described in the Serial class docstring, each layer gets its inputs from the data stack after the preceding layer has put its outputs onto the stack. This covers the simple cases above, but also allows for more flexible data interactions between non-adjacent layers. The following example is schematic:

x, y_target = get_batch_of_labeled_data()

model_plus_eval = Serial(
 my_fancy_deep_model(), # Takes one arg (x) and has one output (y_hat)
 my_eval(), # Takes two args (y_hat, y_target) and has one output (score)
)

eval_score = model_plus_eval((x, y_target))

Here is the corresponding progression of stack states:

	At start: –empty–

	After get_batch_of_labeled_data(): x, y_target

	After my_fancy_deep_model(): y_hat, y_target

	After my_eval(): score

Note in particular how the application of the model (between stack states 1 and 2) only uses and affects the top element on the stack: x –> y_hat. The rest of the data stack (y_target) comes in use only later, for the eval function.

3. Defining New Layer Classes

If you need a layer type that is not easily defined as a combination of existing layer types, you can define your own layer classes in a couple different ways.

With the Fn layer-creating function.

Many layer types needed in deep learning compute pure functions from inputs to outputs, using neither weights nor randomness. You can use Trax’s Fn function to define your own pure layer types:

def Fn(name, f, n_out=1): # pylint: disable=invalid-name
 """Returns a layer with no weights that applies the function `f`.

 `f` can take and return any number of arguments, and takes only positional
 arguments -- no default or keyword arguments. It often uses JAX-numpy (`jnp`).
 The following, for example, would create a layer that takes two inputs and
 returns two outputs -- element-wise sums and maxima:

 `Fn('SumAndMax', lambda x0, x1: (x0 + x1, jnp.maximum(x0, x1)), n_out=2)`

 The layer's number of inputs (`n_in`) is automatically set to number of
 positional arguments in `f`, but you must explicitly set the number of
 outputs (`n_out`) whenever it's not the default value 1.

 Args:
 name: Class-like name for the resulting layer; for use in debugging.
 f: Pure function from input tensors to output tensors, where each input
 tensor is a separate positional arg, e.g., `f(x0, x1) --> x0 + x1`.
 Output tensors must be packaged as specified in the `Layer` class
 docstring.
 n_out: Number of outputs promised by the layer; default value 1.

 Returns:
 Layer executing the function `f`.
 """

Example 7. Use Fn to define a new layer type:

[]:

Define new layer type.
def Gcd():
 """Returns a layer to compute the greatest common divisor, elementwise."""
 return tl.Fn('Gcd', lambda x0, x1: jnp.gcd(x0, x1))

Use it.
gcd = Gcd()

x0 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
x1 = np.array([11, 12, 13, 14, 15, 16, 17, 18, 19, 20])

y = gcd((x0, x1))

print(f'x0:\n{x0}\n\n'
 f'x1:\n{x1}\n\n'
 f'gcd((x0, x1)):\n{y}')

x0:
[1 2 3 4 5 6 7 8 9 10]

x1:
[11 12 13 14 15 16 17 18 19 20]

gcd((x0, x1)):
[1 2 1 2 5 2 1 2 1 10]

The Fn function infers n_in (number of inputs) as the length of f’s arg list. Fn does not infer n_out (number out outputs) though. If your f has more than one output, you need to give an explicit value using the n_out keyword arg.

Example 8. Fn with multiple outputs:

[]:

Define new layer type.
def SumAndMax():
 """Returns a layer to compute sums and maxima of two input tensors."""
 return tl.Fn('SumAndMax',
 lambda x0, x1: (x0 + x1, jnp.maximum(x0, x1)),
 n_out=2)

Use it.
sum_and_max = SumAndMax()

x0 = np.array([1, 2, 3, 4, 5])
x1 = np.array([10, -20, 30, -40, 50])

y0, y1 = sum_and_max([x0, x1])

print(f'x0:\n{x0}\n\n'
 f'x1:\n{x1}\n\n'
 f'y0:\n{y0}\n\n'
 f'y1:\n{y1}')

x0:
[1 2 3 4 5]

x1:
[10 -20 30 -40 50]

y0:
[11 -18 33 -36 55]

y1:
[10 2 30 4 50]

Example 9. Use Fn to define a configurable layer:

[]:

Function defined in trax/layers/core.py:
def Flatten(n_axes_to_keep=1):
 """Returns a layer that combines one or more trailing axes of a tensor.

 Flattening keeps all the values of the input tensor, but reshapes it by
 collapsing one or more trailing axes into a single axis. For example, a
 `Flatten(n_axes_to_keep=2)` layer would map a tensor with shape
 `(2, 3, 5, 7, 11)` to the same values with shape `(2, 3, 385)`.

 Args:
 n_axes_to_keep: Number of leading axes to leave unchanged when reshaping;
 collapse only the axes after these.
 """
 layer_name = f'Flatten_keep{n_axes_to_keep}'
 def f(x):
 in_rank = len(x.shape)
 if in_rank <= n_axes_to_keep:
 raise ValueError(f'Input rank ({in_rank}) must exceed the number of '
 f'axes to keep ({n_axes_to_keep}) after flattening.')
 return jnp.reshape(x, (x.shape[:n_axes_to_keep] + (-1,)))
 return tl.Fn(layer_name, f)

flatten_keep_1_axis = Flatten(n_axes_to_keep=1)
flatten_keep_2_axes = Flatten(n_axes_to_keep=2)

x = np.array([[[1, 2, 3],
 [10, 20, 30],
 [100, 200, 300]],
 [[4, 5, 6],
 [40, 50, 60],
 [400, 500, 600]]])

y1 = flatten_keep_1_axis(x)
y2 = flatten_keep_2_axes(x)

print(f'x:\n{x}\n\n'
 f'flatten_keep_1_axis(x):\n{y1}\n\n'
 f'flatten_keep_2_axes(x):\n{y2}')

x:
[[[1 2 3]
 [10 20 30]
 [100 200 300]]

 [[4 5 6]
 [40 50 60]
 [400 500 600]]]

flatten_keep_1_axis(x):
[[1 2 3 10 20 30 100 200 300]
 [4 5 6 40 50 60 400 500 600]]

flatten_keep_2_axes(x):
[[[1 2 3]
 [10 20 30]
 [100 200 300]]

 [[4 5 6]
 [40 50 60]
 [400 500 600]]]

By defining a Layer subclass

If you need a layer type that uses trainable weights (or state), you can extend the base Layer class:

class Layer:
 """Base class for composable layers in a deep learning network.

 ...

 Authors of new layer subclasses typically override at most two methods of
 the base `Layer` class:

 `forward(inputs)`:
 Computes this layer's output as part of a forward pass through the model.

 `init_weights_and_state(self, input_signature)`:
 Initializes weights and state for inputs with the given signature.

 ...

The forward method uses weights stored in the layer object (self.weights) to compute outputs from inputs. For example, here is the definition of forward for Trax’s Dense layer:

def forward(self, x):
 """Executes this layer as part of a forward pass through the model.

 Args:
 x: Tensor of same shape and dtype as the input signature used to
 initialize this layer.

 Returns:
 Tensor of same shape and dtype as the input, except the final dimension
 is the layer's `n_units` value.
 """
 if self._use_bias:
 if not isinstance(self.weights, (tuple, list)):
 raise ValueError(f'Weights should be a (w, b) tuple or list; '
 f'instead got: {self.weights}')
 w, b = self.weights
 return jnp.dot(x, w) + b # Affine map.
 else:
 w = self.weights
 return jnp.dot(x, w) # Linear map.

Layer weights must be initialized before the layer can be used; the init_weights_and_state method specifies how. Continuing the Dense example, here is the corresponding initialization code:

def init_weights_and_state(self, input_signature):
 """Randomly initializes this layer's weights.

 Weights are a `(w, b)` tuple for layers created with `use_bias=True` (the
 default case), or a `w` tensor for layers created with `use_bias=False`.

 Args:
 input_signature: `ShapeDtype` instance characterizing the input this layer
 should compute on.
 """
 shape_w = (input_signature.shape[-1], self._n_units)
 shape_b = (self._n_units,)
 rng_w, rng_b = fastmath.random.split(self.rng, 2)
 w = self._kernel_initializer(shape_w, rng_w)

 if self._use_bias:
 b = self._bias_initializer(shape_b, rng_b)
 self.weights = (w, b)
 else:
 self.weights = w

By defining a Combinator subclass

TBD

4. Testing and Debugging Layer Classes

TBD

Using Trax with TensorFlow NumPy and Keras

This notebook (run it in colab [https://colab.research.google.com/github/google/trax/blob/master/trax/tf_numpy_and_keras.ipynb]) shows how you can run Trax [https://trax-ml.readthedocs.io/en/latest/] directly with TensorFlow NumPy [https://www.tensorflow.org/api_docs/python/tf/experimental/numpy]. You will also see how to use Trax layers and models inside Keras [https://keras.io/] so you can use Trax in production, e.g., with TensorFlow.js [https://www.tensorflow.org/js/] or
TensorFlow Serving [https://www.tensorflow.org/tfx/guide/serving].

	Trax with TensorFlow NumPy: use Trax with TensorFlow NumPy [https://www.tensorflow.org/api_docs/python/tf/experimental/numpy] without any code changes

	Convert Trax to Keras: how to get a Keras [https://keras.io/] layer for your Trax model and use it

	Exporting Trax Models for Deployment: how to export Trax models to TensorFlow SavedModel [https://www.tensorflow.org/guide/saved_model]

1. Trax with TensorFlow NumPy

In Trax, all computations rely on accelerated math operations happening in the fastmath module. This module can use different backends for acceleration. One of them is TensorFlow NumPy [https://www.tensorflow.org/api_docs/python/tf/experimental/numpy] which uses TensorFlow 2 [https://www.tensorflow.org/] to accelerate the computations.

The backend can be set using a call to trax.fastmath.set_backend as you’ll see below. Currently available backends are jax (default), tensorflow-numpy and numpy (for debugging). The tensorflow-numpy backend uses TensorFlow Numpy [https://www.tensorflow.org/api_docs/python/tf/experimental/numpy] for executing fastmath functions on TensorFlow, while the jax backend calls JAX [https://github.com/google/jax] which lowers to TensorFlow XLA.

You may see that tensorflow-numpy and jax backends show different speed and memory characteristics. You may also see different error messages when debugging since it might expose you to the internals of the backends. However for the most part, users can choose a backend and not worry about the internal details of these backends.

Let’s train the sentiment analysis model from the Trax intro [https://colab.research.google.com/github/google/trax/blob/master/trax/intro.ipynb] using TensorFlow NumPy to see how it works.

General Setup

Execute the following few cells (once) before running any of the code samples.

[1]:

#@title
Copyright 2020 Google LLC.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

[2]:

Install and import Trax
!pip install -q -U git+https://github.com/google/trax@master

import os
import numpy as np
import trax

Here is how you can set the fastmath backend to tensorflow-numpy and verify that it’s been set.

[3]:

Use the tensorflow-numpy backend.
trax.fastmath.set_backend('tensorflow-numpy')
print(trax.fastmath.backend_name())

tensorflow-numpy

[4]:

Create data streams.
train_stream = trax.data.TFDS('imdb_reviews', keys=('text', 'label'), train=True)()
eval_stream = trax.data.TFDS('imdb_reviews', keys=('text', 'label'), train=False)()

data_pipeline = trax.data.Serial(
 trax.data.Tokenize(vocab_file='en_8k.subword', keys=[0]),
 trax.data.Shuffle(),
 trax.data.FilterByLength(max_length=2048, length_keys=[0]),
 trax.data.BucketByLength(boundaries=[32, 128, 512, 2048],
 batch_sizes=[512, 128, 32, 8, 1],
 length_keys=[0]),
 trax.data.AddLossWeights()
)
train_batches_stream = data_pipeline(train_stream)
eval_batches_stream = data_pipeline(eval_stream)

Print example shapes.
example_batch = next(train_batches_stream)
print(f'batch shapes = {[x.shape for x in example_batch]}')

batch shapes = [(8, 2048), (8,), (8,)]

[5]:

Create the model.
from trax import layers as tl

model = tl.Serial(
 tl.Embedding(vocab_size=8192, d_feature=256),
 tl.Mean(axis=1), # Average on axis 1 (length of sentence).
 tl.Dense(2), # Classify 2 classes.
)

You can print model structure.
print(model)

Serial[
 Embedding_8192_256
 Mean
 Dense_2
]

[6]:

Train the model.
from trax.supervised import training

Training task.
train_task = training.TrainTask(
 labeled_data=train_batches_stream,
 loss_layer=tl.WeightedCategoryCrossEntropy(),
 optimizer=trax.optimizers.Adam(0.01),
 n_steps_per_checkpoint=500,
)

Evaluaton task.
eval_task = training.EvalTask(
 labeled_data=eval_batches_stream,
 metrics=[tl.WeightedCategoryCrossEntropy(), tl.WeightedCategoryAccuracy()],
 n_eval_batches=20 # For less variance in eval numbers.
)

Training loop saves checkpoints to output_dir.
output_dir = os.path.expanduser('~/output_dir/')
training_loop = training.Loop(model,
 train_task,
 eval_tasks=[eval_task],
 output_dir=output_dir)

Run 2000 steps (batches).
training_loop.run(2000)

Step 1: Total number of trainable weights: 2097666
Step 1: Ran 1 train steps in 1.01 secs
Step 1: train WeightedCategoryCrossEntropy | 0.69292086
Step 1: eval WeightedCategoryCrossEntropy | 0.68457415
Step 1: eval WeightedCategoryAccuracy | 0.56406250

Step 500: Ran 499 train steps in 19.92 secs
Step 500: train WeightedCategoryCrossEntropy | 0.50587755
Step 500: eval WeightedCategoryCrossEntropy | 0.46716719
Step 500: eval WeightedCategoryAccuracy | 0.80625000

Step 1000: Ran 500 train steps in 17.50 secs
Step 1000: train WeightedCategoryCrossEntropy | 0.36375266
Step 1000: eval WeightedCategoryCrossEntropy | 0.44373559
Step 1000: eval WeightedCategoryAccuracy | 0.80000000

Step 1500: Ran 500 train steps in 18.40 secs
Step 1500: train WeightedCategoryCrossEntropy | 0.34449804
Step 1500: eval WeightedCategoryCrossEntropy | 0.34941847
Step 1500: eval WeightedCategoryAccuracy | 0.84687500

Step 2000: Ran 500 train steps in 17.18 secs
Step 2000: train WeightedCategoryCrossEntropy | 0.28685242
Step 2000: eval WeightedCategoryCrossEntropy | 0.50030373
Step 2000: eval WeightedCategoryAccuracy | 0.77539062

[7]:

Run on an example.
example_input = next(eval_batches_stream)[0][0]
example_input_str = trax.data.detokenize(example_input, vocab_file='en_8k.subword')
print(f'example input_str: {example_input_str}')
sentiment_activations = model(example_input[None, :]) # Add batch dimension.
print(f'Model returned sentiment activations: {np.asarray(sentiment_activations)}')

example input_str: The movie features another exceptional collaboration between director William Wyler and cinematographer Gregg Toland, the first after Toland worked on Citizen Kane. But the talent of both these men was focused on achieving a perfectly crafted movie, understood in the good old American sense as a great story. The technical aspects of the movie are covered so as the viewer gets absorbed into the action that takes place on the screen without submitting to the power of the image. Technique is seen as a vehicle of representation unlike in Citizen Kane where Welles' baroque style almost drew the attention from the story to the way the story was told. One of my favorite moves with deep focus in this film is the drama conveyed by the returning home welcoming of Homer and Al. If Homer's girl, Wilma comes towards him perfectly in focus, Al goes over to his wife also perfectly in focus. This is a brilliant move because it shows only through the use of the image the nature of these relationships as we will see them throughout the movie: Wilma loves Homer and she accepts him as he is, Al's wife loves him also but she feels unprepared to fully welcome him home. Also later in the film we find out that their marriage has not always been a bed of roses.

Wyler is a director whose force lies in being true to his work without feeling the need to boast. He wanted to show his audience how hard it was for the American soldiers returning from the war to fit into a society that either didn't understand them or treated them with contempt. With a perfect cast and great dialogue Goldwin and Wyler produced a movie that will forever be the template for any other returning home movie. The three hours which coincide with the "rough cut" because the test audience back then never felt for a moment that the action was slow and indeed every scene from the film seems perfectly justified. The whole thing is constructed beautifully, every character gets a fair amount of exposure, nothing is left to chance and it is quite pitiful that Hollywood nowadays never manages to bring so much character conflict to the screen. TBYOOL explores the depth of the American way of life, of the American family and society to an extent that makes other movies look like "the children's hour".<pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>
Model returned sentiment activations: [[-1.6396211 1.6328843]]

2. Convert Trax to Keras

Thanks to TensorFlow NumPy [https://www.tensorflow.org/api_docs/python/tf/experimental/numpy] you can convert the model you just trained into a Keras [https://keras.io/] layer using trax.AsKeras. This allows you to:

	use Trax layers inside Keras models

	run Trax models with existing Keras input pipelines

	export Trax models to TensorFlow SavedModel [https://www.tensorflow.org/guide/saved_model]

When creating a Keras layer from a Trax one, the Keras layer weights will get initialized to the ones the Trax layer had at the moment of creation. In this way, you can create Keras layers from pre-trained Trax models and save them as SavedModel as shown below.

[8]:

Convert the model into a Keras layer, use the weights from model.
keras_layer = trax.AsKeras(model)
print(keras_layer)

Run the Keras layer to verify it returns the same result.
sentiment_activations = keras_layer(example_input[None, :])
print(f'Keras returned sentiment activations: {np.asarray(sentiment_activations)}')

<trax.trax2keras.AsKeras object at 0x7efff5a47a90>
Keras returned sentiment activations: [[-1.6396211 1.6328843]]

[9]:

import tensorflow as tf

Create a full Keras model using the layer from Trax.
inputs = tf.keras.Input(shape=(None,), dtype='int32')
hidden = keras_layer(inputs)
You can add other Keras layers here operating on hidden.
outputs = hidden
keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
print(keras_model)

Run the Keras model to verify it returns the same result.
sentiment_activations = keras_model(example_input[None, :])
print(f'Keras returned sentiment activations: {np.asarray(sentiment_activations)}')

Keras returned sentiment activations: [[-1.6396211 1.6328843]]

3. Exporting Trax Models for Deployment

You can export the Keras model to disk as TensorFlow SavedModel [https://www.tensorflow.org/guide/saved_model]. It’s as simple as calling keras_model.save and allows you to use models with TF tools TensorFlow.js [https://www.tensorflow.org/js/], TensorFlow Serving [https://www.tensorflow.org/tfx/guide/serving] and TensorFlow Lite [https://www.tensorflow.org/lite].

[10]:

Save the Keras model to output_dir.
model_file = os.path.join(output_dir, "model_checkpoint")
keras_model.save(model_file)

Load the model from SavedModel.
loaded_model = tf.keras.models.load_model(model_file)

Run the loaded model to verify it returns the same result.
sentiment_activations = loaded_model(example_input[None, :])
print(f'Keras returned sentiment activations: {np.asarray(sentiment_activations)}')

Keras returned sentiment activations: [[-1.6396211 1.6328843]]

trax

	fastmath.*
	ops

	layers.*
	acceleration

	activation_fns

	attention

	base

	combinators

	convolution

	core

	initializers

	metrics

	normalization

	pooling

	reversible

	rnn

	research.efficient_attention

	research.position_encodings

	models.*
	atari_cnn

	mlp

	neural_gpu

	resnet

	rl

	rnn

	transformer

	reformer.reformer

	research.bert

	research.skipping_transformer

	data.*
	inputs

	tf_inputs

	optimizers.*
	adafactor

	adam

	base

	momentum

	rms_prop

	sm3

	supervised.*
	decoding

	lr_schedules

	training

	rl.*
	actor_critic

	actor_critic_joint

	advantages

	distributions

	normalization

	rl_layers

	serialization_utils

	space_serializer

	task

	training

shapes

Core class and functions for handling data abstractly as shapes/dtypes.

	
class trax.shapes.ShapeDtype(shape, dtype=<sphinx.ext.autodoc.importer._MockObject object>)

	Bases: object

A NumPy ndarray-like object abstracted as shape and dtype.

Main use is for representing input and output signatures.

	
__init__(shape, dtype=<sphinx.ext.autodoc.importer._MockObject object>)

	Creates a ShapeDtype instance, with canonicalized shape and dtype.

	Parameters

	
	shape – A tuple or list, each element of which is an int or, less often,
None.

	dtype – A dtype object, either from NumPy or TensorFlow.

	Returns

	A ShapeDtype instance whose shape is a tuple and dtype is a NumPy
dtype object.

	
shape

	

	
dtype

	

	
as_tuple()

	

	
replace(**kwargs)

	Creates a copy of the object with some parameters replaced.

	
trax.shapes.signature(obj)

	Returns a ShapeDtype signature for the given obj.

A signature is either a ShapeDtype instance or a tuple of ShapeDtype
instances. Note that this function is permissive with respect to its inputs
(accepts lists or tuples or dicts, and underlying objects can be any type
as long as they have shape and dtype attributes) and returns the corresponding
nested structure of ShapeDtype.

	Parameters

	obj – An object that has shape and dtype attributes, or a list/tuple/dict
of such objects.

	Returns

	A corresponding nested structure of ShapeDtype instances.

	
trax.shapes.splice_signatures(*sigs)

	Creates a new signature by splicing together any number of signatures.

The splicing effectively flattens the top level input signatures. For
instance, it would perform the following mapping:

	*sigs: sd1, (sd2, sd3, sd4), (), sd5

	return: (sd1, sd2, sd3, sd4, sd5)

	Parameters

	*sigs – Any number of signatures. A signature is either a ShapeDtype
instance or a tuple of ShapeDtype instances.

	Returns

	A single ShapeDtype instance if the spliced signature has one element,
else a tuple of ShapeDtype instances.

	
trax.shapes.assert_shape_equals(array, shape)

	Asserts that an array has the given shape.

	
trax.shapes.assert_same_shape(array1, array2)

	Asserts that two arrays have the same shapes.

trainer

Trax trainer.

	
trax.trainer.tf_init_tpu(worker='', protocol=None)

	Initializes TPU for TensorFlow.

	Parameters

	
	worker – The BNS address of the remote TPU worker. If it’s empty (the default
value), TF will assume the TPU devices are connected to the local host.

	protocol – The network protocol used to connect to the TPU worker.

	Returns

	The device name of the TPU worker’s CPU.

	
trax.trainer.main(_)

	

rl_trainer

Trainer for RL environments.

For now we only support PPO as RL algorithm.

Sample invocation:

TRAIN_BATCH_SIZE=32
python trax/rl_trainer.py \
 --config_file=trax/rl/configs/ppo_acrobot.gin \
 --train_batch_size=${TRAIN_BATCH_SIZE} \
 --output_dir=${HOME}/ppo_acrobot \
 --alsologtostderr

	
trax.rl_trainer.train_rl(output_dir, n_epochs=10000, light_rl=True, light_rl_trainer=<class 'trax.rl.training.PolicyGradient'>)

	Train the RL agent.

	Parameters

	
	output_dir – Output directory.

	n_epochs – Number epochs to run the training for.

	light_rl – deprecated, always True, left out for old gin configs.

	light_rl_trainer – which light RL trainer to use (experimental).

	
trax.rl_trainer.main(argv)

	

trax2keras

Trax-to-Keras converter.

	
trax.trax2keras.tensor_shapes_to_shape_dtypes(shapes, dtype)

	

	
trax.trax2keras.read_values(variables)

	

	
trax.trax2keras.to_tensors(args)

	

	
trax.trax2keras.to_arrays(args)

	

	
class trax.trax2keras.AsKeras(trax_layer, batch_size=None, initializer_rng=None, rng=None, rng_updater=None, dtype=None)

	Bases: sphinx.ext.autodoc.importer._MockObject

A Keras layer built from a Trax layer.

This subclass of tf.keras.layers.Layer takes in a Trax layer as a
constructor argument and wraps it to be a Keras layer. It uses
tf.Variable to store weights and state (initialized according to the Trax
layer), and uses the Trax layer’s forward function as its forward function.

Consider this code snippet:

keras_layer = AsKeras(trax_layer, initializer_rng=initializer_rng,
 rng=rng, rng_updater=rng_updater)
keras_layer.build(...) # optional
outputs = keras_layer(inputs)

(Note that in Keras calling Layer.build is optional. If omitted, it will be
called automatically by Layer.__call__.)

If trax_layer already has weights at build time, the snippet is roughly
equivalent to:

weights = trax_layer.weights
state = trax_layer.state
keras_layer = tf.keras.layers.Layer()
keras_layer._weights = tf.Variable(weights)
keras_layer._state = tf.Variable(state)
keras_layer._rng = tf.Variable(rng)
outputs, new_state = trax_layer(inputs, keras_layer._weights,
 keras_layer._state, keras_layer._rng)
keras_layer._state.assign(new_state)
keras_layer._rng.assign(rng_updater(rng))

If trax_layer doesn’t have weights at build time, the snippet is roughly
equivalent to:

weights, state = trax_layer.init(..., rng=initializer_rng)
keras_layer = ...
...

AsKeras uses tf.Variable to store weights, not shared with the
original Trax layer (which uses tensors to store weights), so using
AsKeras may double the memory footprint. This problem can be solved
by making sure that the Trax layer’s weights/state are cleared whenever
tf.Variable.assign (and tf.Variable.assign_add etc.) is called, because
tf.Variable is copy-on-write by default.

Mutations in those tf.Variable`s won’t affect the Trax layer’s weights, but
`AsKeras’s forward function calls the Trax layer’s forward function,
which caches the weights in the Trax layer object, so a forward pass may
change the weights cached in the original Trax layer.

Note that this class is not thread-safe. If the same AsKeras object
is used in multiple threads, the tf.Variable updates may happen in a
non-deterministic order.

	
__init__(trax_layer, batch_size=None, initializer_rng=None, rng=None, rng_updater=None, dtype=None)

	Creates a Keras layer wrapping around a Trax layer.

	Parameters

	
	trax_layer – an object of class trax.layers.Layer, the trax layer to
wrap.

	batch_size – (optional) an integer, the batch size that this Keras layer
will be used on. Keras sometimes needs to generate a TF graph for a
layer (e.g. for acceleration or checkpointing). The inputs used to trace
the graph will have None as the length of their batch dimensions, so
as to generate a graph that can handle any batch size. Some Trax layers
can’t handle tensors whose shapes contain None. If batch_size is set
to an integer, the graph will be traced with batch_size as the batch
size instead of None. Note that in this case the graph (and the Keras
layer) can only be used on a specific batch size. If you want to use a
different batch size, you need to create another AsKeras object
with a different batch_size.

	initializer_rng – (optional) an RNG key used to create the weights and
state if trax_layer doesn’t have them. If None,
trax.fastmath.random.get_prng(0) will be used.

	rng – (optional) an RNG key for the forward function (aka the “forward
key”). If None, trax.fastmath.random.get_prng(0) will be used.

	rng_updater – (optional) a function of type rng_key -> rng_key, used to
update the forward key after each forward pass. If None, the function
lambda x: trax.fastmath.random.split(x, 1)[0] will be used, which
advances the RNG key.

	dtype – (optional) the dtype of the inputs. See the dtype argument of
tf.keras.layers.Layer.__init__ for details.

	
build(input_shape)

	

	
call(inputs)

	

trax.fastmath

ops

Trax accelerated math operations for fast computing on GPUs and TPUs.

Import these operations directly from fastmath and import fastmath.numpy as np:

from trax import fastmath
from trax.fastmath import numpy as np

x = np.array([1.0, 2.0]) # Use like numpy.
y = np.exp(x) # Common numpy ops are available and accelerated.
z = fastmath.logsumexp(y) # Special operations available from fastmath.

Trax uses either TensorFlow 2 or JAX as backend for accelerating operations.
You can select which one to use (e.g., for debugging) with use_backend.

	
class trax.fastmath.ops.Backend

	Bases: enum.Enum

An enumeration.

	
JAX = 'jax'

	

	
TFNP = 'tensorflow-numpy'

	

	
NUMPY = 'numpy'

	

	
class trax.fastmath.ops.NumpyBackend

	Bases: object

Numpy functions accelerated to run on GPUs and TPUs. Use like numpy.

	
trax.fastmath.ops.numpy

	Numpy functions accelerated to run on GPUs and TPUs. Use like numpy.

	
class trax.fastmath.ops.RandomBackend

	Bases: object

Backend providing random functions.

	
get_prng(seed)

	

	
split(prng, num=2)

	

	
fold_in(rng, data)

	

	
uniform(*args, **kwargs)

	

	
randint(*args, **kwargs)

	

	
normal(*args, **kwargs)

	

	
bernoulli(*args, **kwargs)

	

	
trax.fastmath.ops.logsumexp(*args, **kwargs)

	Computes the log of the sum of exponentials of input elements.

	
trax.fastmath.ops.expit(*args, **kwargs)

	Computes the expit (sigmoid) function.

	
trax.fastmath.ops.sigmoid(*args, **kwargs)

	Computes the sigmoid (expit) function.

	
trax.fastmath.ops.erf(*args, **kwargs)

	Computes the erf function.

	
trax.fastmath.ops.conv(*args, **kwargs)

	Computes a generalized convolution.

	
trax.fastmath.ops.avg_pool(*args, **kwargs)

	Average pooling.

	
trax.fastmath.ops.max_pool(*args, **kwargs)

	Max pooling.

	
trax.fastmath.ops.sum_pool(*args, **kwargs)

	Sum pooling.

	
trax.fastmath.ops.top_k(*args, **kwargs)

	Top k.

	
trax.fastmath.ops.sort_key_val(*args, **kwargs)

	Sorts keys along dimension and applies same permutation to values.

	
trax.fastmath.ops.scan(*args, **kwargs)

	Scan to make recurrent functions run faster on accelerators.

	
trax.fastmath.ops.map(*args, **kwargs)

	Map a function over leading array axes.

	
trax.fastmath.ops.fori_loop(lower, upper, body_fn, init_val)

	Loop from lower to upper running body_fn starting from init_val.

The semantics of fori_loop is as follows:

def fori_loop(lower, upper, body_fn, init_val):
 val = init_val
 for i in range(lower, upper):
 val = body_fn(i, val)
 return val

	Parameters

	
	lower – an integer representing the loop index lower bound (inclusive)

	upper – an integer representing the loop index upper bound (exclusive)

	body_fn – function of type (int, a) -> a.

	init_val – initial loop carry value of type a.

	Returns

	Loop value from the final iteration.

	
trax.fastmath.ops.remat(*args, **kwargs)

	Recompute everything in the backward pass to same memory.

	
trax.fastmath.ops.cond(*args, **kwargs)

	Conditional computation to run on accelerators.

	
trax.fastmath.ops.lt(*args, **kwargs)

	Less-than function for backends that do not override <.

	
trax.fastmath.ops.index_update(*args, **kwargs)

	

	
trax.fastmath.ops.index_add(*args, **kwargs)

	

	
trax.fastmath.ops.index_min(*args, **kwargs)

	

	
trax.fastmath.ops.index_max(*args, **kwargs)

	

	
trax.fastmath.ops.dynamic_slice(*args, **kwargs)

	

	
trax.fastmath.ops.dynamic_slice_in_dim(*args, **kwargs)

	

	
trax.fastmath.ops.dynamic_update_slice(*args, **kwargs)

	

	
trax.fastmath.ops.dynamic_update_slice_in_dim(*args, **kwargs)

	

	
trax.fastmath.ops.stop_gradient(*args, **kwargs)

	Identity on the forward pass but 0 (no gradient) on the backward pass.

	
trax.fastmath.ops.jit(*args, **kwargs)

	Just-In-Time compiles the given function for use on accelerators.

	
trax.fastmath.ops.disable_jit()

	Disables JIT-compilation; helpful for debugging.

	
trax.fastmath.ops.vmap(*args, **kwargs)

	Vectorizes the specified function (returns a function).

	
trax.fastmath.ops.grad(*args, **kwargs)

	Computes the gradient of the specified function (returns a function).

	
trax.fastmath.ops.value_and_grad(*args, **kwargs)

	Computes the gradient of the specified function together with the value.

	
trax.fastmath.ops.vjp(*args, **kwargs)

	Computes the vector-Jacobian product for the specified function.

	
trax.fastmath.ops.custom_grad(*args, **kwargs)

	Set a custom gradient computation (override the default) for a function.

	
trax.fastmath.ops.custom_vjp(f, f_fwd, f_bwd, nondiff_argnums=())

	Set a custom vjp computation (override the default) for a function.

	
trax.fastmath.ops.pmap(*args, **kwargs)

	Parallel-map to apply a function on multiple accelerators in parallel.

	
trax.fastmath.ops.psum(*args, **kwargs)

	Parallel-sum to use within a pmap’d function for aggregation.

	
trax.fastmath.ops.abstract_eval(*args, **kwargs)

	Evaluates function just on signatures of parameters, return signatures.

	
trax.fastmath.ops.dataset_as_numpy(*args, **kwargs)

	Convert a tf.data.Dataset to a stream of numpy arrays.

	
trax.fastmath.ops.global_device_count(*args, **kwargs)

	Return the number of accelerators (GPUs or TPUs) in all hosts.

	
trax.fastmath.ops.local_device_count(*args, **kwargs)

	Return the number of accelerators (GPUs or TPUs) available on this host.

	
trax.fastmath.ops.set_backend(name)

	Sets the default backend to use in Trax.

	
trax.fastmath.ops.backend(name='jax')

	Returns the backend used to provide fastmath ops (‘tf’ or ‘jax’).

	
trax.fastmath.ops.use_backend(name)

	Call fastmath functions with a specified backend.

	
trax.fastmath.ops.backend_name()

	Returns the name of the backend currently in use (‘tf’ or ‘jax’).

	
trax.fastmath.ops.is_backend(backend_)

	

trax.layers

acceleration

Modifications to data and computation to use accelerators (better).

	
class trax.layers.acceleration.Accelerate(layer, n_devices=None)

	Bases: trax.layers.base.Layer

Accelerates a layer, running in data-parallel way on multiple devices.

By default it uses all available accelerators, splits the input on the
first (batch) axis, and runs each part on the corresponding accelerator.
If only one accelerator is available, this layer JIT-compiles the underlying
layer and in this way makes it run faster.

The output is guaranteed to be the same as the output of the original layer
if the batch dimension is divisible by the number of devices. If it is not,
then 0-padding is added to make it divisible and the output may be affected
if it relies on layers like batch normalization.

This layer does not require calling init if the underlying layer has
already been initialized, so it can be used as follows:

layer = tl.Serial(...)
layer.init(...)
fast_layer = tl.Accelerate(layer)
y = fast_layer(x) # Split x on batch and run data-parallel

In case the weights of this layer need to be set using the weights of
the sublayer, use the replicate_weights function:

Instead of layer.weights = new_weights:
fast_layer.replicate_weights(new_weights)

	
__init__(layer, n_devices=None)

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
sublayer

	Returns the unique sublayer managed by this layer.

	
pure_fn(x, weights, state, rng, use_cache=False)

	Calls self.sublayer.pure_fn in an accelerated way.

	
init(input_signature)

	Calls self.sublayer.init and replicates its values onto devices.

	
replicate_weights(weights)

	Sets the weights of the sublayer and replicates them for this layer.

	
replicate_state(state)

	Sets the state of the sublayer and replicates it for this layer.

	
weights

	Returns this layer’s weights.

Depending on the layer, the weights can be in the form of:

	an empty tuple

	a tensor (ndarray)

	a nested structure of tuples and tensors

If the layer has sublayers, the weights by convention will be
a tuple of length len(sublayers) containing the weights of sublayers.
Note that in this case self._weights only marks which ones are shared.

	
state

	Returns a tuple containing this layer’s state; may be empty.

If the layer has sublayers, the state by convention will be
a tuple of length len(sublayers) containing sublayer states.
Note that in this case self._state only marks which ones are shared.

	
trax.layers.acceleration.mean_or_pmean(n_devices, x, axis=None)

	Computes the mean of a distributed value x.

	Parameters

	
	n_devices – Number of devices.

	x – Distributed array.

	axis – Axis along which to compute means; can only be 0 or None.

	Returns

	A local array.

	
trax.layers.acceleration.jit_forward(forward, n_devices, do_mean=True)

	Returns a JIT-compiled forward function running on n_devices.

	
trax.layers.acceleration.reshape_by_device(x, n_devices, pure_np=False)

	Reshapes possibly nested x into a shape (n_devices, ...).

	
trax.layers.acceleration.for_n_devices(x, n_devices)

	Replicates/broadcasts x for n_devices.

	
trax.layers.acceleration.on_cpu(x)

	Puts x in CPU memory in JAX.

	
trax.layers.acceleration.on_accelerator(x)

	Puts x in (single) accelerator memory in JAX.

activation_fns

Layers that compute activation functions.

An activation layer computes element-wise a nonlinear function of the preceding
layer’s output. Historically, an activation function was considered part of
each node in each layer of the neural network. Trax follows the common current
practice of separating the activation function as its own layer, which enables
easier experimentation across different activation functions.

	
trax.layers.activation_fns.Relu()

	Returns a layer that computes the Rectified Linear Unit (ReLU) function.

\[\begin{split}f(x) = \left\{ \begin{array}{cl}
 0 & \text{if}\ x \leq 0, \\
 x & \text{otherwise}.
\end{array} \right.\end{split}\]

	
trax.layers.activation_fns.ParametricRelu(a=1.0)

	Returns a layer that computes a ReLU function with the given slope.

\[\begin{split}f(x) = \left\{ \begin{array}{cl}
 0 & \text{if}\ x \leq 0, \\
 ax & \text{otherwise}.
\end{array} \right.\end{split}\]

	Parameters

	a – Slope of line for positive inputs.

	
trax.layers.activation_fns.LeakyRelu(a=0.01)

	Returns a ReLU-like layer with linear nonzero outputs for negative inputs.

\[\begin{split}f(x) = \left\{ \begin{array}{cl}
 ax & \text{if}\ x \leq 0, \\
 x & \text{otherwise}.
\end{array} \right.\end{split}\]

	Parameters

	a – Slope of line for negative inputs.

	
trax.layers.activation_fns.Elu(a=1.0)

	Returns a ReLU-like layer with exponential outputs for negative inputs.

\[\begin{split}f(x) = \left\{ \begin{array}{cl}
 a \cdot (e^x - 1) & \text{if}\ x \leq 0, \\
 x & \text{otherwise}.
\end{array} \right.\end{split}\]

(Asymptotically, \(f(x)\rightarrow -a\) as \(x\rightarrow - \infty\).)

	Parameters

	a – Coefficient multiplying the exponential, for negative inputs.

	
trax.layers.activation_fns.Selu(alpha=1.6732632423543772, lmbda=1.0507009873554805)

	Returns an Elu-like layer with an additional scaling/slope parameter.

\[\begin{split}f(x) = \left\{ \begin{array}{cl}
 \lambda \cdot \alpha \cdot (e^x - 1) & \text{if}\ x \leq 0, \\
 \lambda \cdot x & \text{otherwise}.
\end{array} \right.\end{split}\]

	Parameters

	
	alpha – Coefficient multiplying the exponential, for negative inputs.

	lmbda – Coefficient scaling the whole function.

	
trax.layers.activation_fns.Gelu()

	Returns a layer that computes the Gaussian Error Linear Unit function.

\[f(x) = \frac{x}{2} \cdot (1 + \hbox{erf}(\frac{x}{\sqrt{2}}))\]

	
trax.layers.activation_fns.FastGelu()

	Returns a layer that computes a fast approximation to Gelu.

\[f(x) = \frac{x}{2} \cdot (1 + \tanh(ax + abx^3))\]

where \(a = 0.7978845608\) and \(b = 0.044715\).

	
trax.layers.activation_fns.Sigmoid()

	Returns a layer that computes the sigmoid function.

\[f(x) = \frac{1}{1 + e^{-x}}\]

	
trax.layers.activation_fns.Tanh()

	Returns a layer that computes the hyperbolic tangent function.

\[f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}\]

	
trax.layers.activation_fns.HardSigmoid()

	Returns a layer that computes a linear approximation to Sigmoid.

\[\begin{split}f(x) = \left\{ \begin{array}{cl}
 0 & \text{if}\ x \leq 0, \\
 x & \text{if}\ 0 < x < 1, \\
 1 & \text{otherwise}.
\end{array} \right.\end{split}\]

	
trax.layers.activation_fns.HardTanh()

	Returns a layer that computes a linear approximation to Tanh.

\[\begin{split}f(x) = \left\{ \begin{array}{cl}
 -1 & \text{if}\ x \leq -1, \\
 x & \text{if}\ -1 < x < 1, \\
 1 & \text{otherwise}.
\end{array} \right.\end{split}\]

	
trax.layers.activation_fns.Softplus()

	Returns a layer that computes the softplus function.

\[f(x) = \ln(e^x + 1)\]

	
trax.layers.activation_fns.Exp()

	Returns a layer that computes the element-wise exponential of a tensor.

	
trax.layers.activation_fns.Log()

	Returns a layer that computes the element-wise logarithm of a tensor.

	
trax.layers.activation_fns.Swish()

	Returns a layer that computes the Swish function.

\[f(x) = x \cdot \text{sigmoid}(x)\]

	
trax.layers.activation_fns.Glu()

	Returns a layer that computes the Gated Linear Unit function.

\[f(x) = a \cdot \text{sigmoid}(b)\]

where a and b are formed by splitting input in half along axis

	
class trax.layers.activation_fns.ThresholdedLinearUnit(n_in=1, n_out=1, name=None, sublayers_to_print=None)

	Bases: trax.layers.base.Layer

Thresholded Linear Unit, c.f. https://arxiv.org/pdf/1911.09737.pdf .

	
init_weights_and_state(input_signature)

	Initializes this layer’s single weight to zero.

	
forward(inputs)

	Executes this layer as part of a forward pass through the model.

	Parameters

	inputs – Tensor.

	Returns

	Tensor of same shape and dtype as the input.

attention

Attention-related layers, as used in Transformer(-like) models.

Attention is a trainable mechanism for mapping between collections of vectors:

\[\text{Attention}: \mathbf{X}^{n} \rightarrow \mathbf{X}^{n}\!,
\ \text{for} \ \mathbf{X} \in \mathbb{R}^d\]

Whereas classic neural networks assemble nodes of numbers with weighted
connections:

	node activations: floating point values (one float per node)

	inter-node connections: trainable weights (one float per connection),

attention lets one assemble nodes of vectors and use further vectors to
calculate connection strengths:

	node activations: floating point vectors, and

	inter-node connections: computed using trainable vectors.

Computing connection strengths involves several concepts – queries, keys,
values, masks, attention heads – that factor heavily into the API below.

NOTE: Attention, positional encoding, and shift layers in this module include
mode-dependent behavior. The possible modes are:

	'train': in training – dropouts and position shifts active

	'eval': in evals – dropouts inactive, position shifts active

	'predict': in prediction – dropouts and position shifts inactive

	
trax.layers.attention.Attention(d_feature, n_heads=1, dropout=0.0, mode='train')

	Returns a layer that maps (vectors, mask) to (new_vectors, mask).

This layer type represents one pass of multi-head self-attention, from vector
set to vector set, using masks to represent out-of-bound (e.g., padding)
positions. It:

	makes three copies of incoming activations and maps these to multi-head
query (Q) vectors, key (K) vectors, and value (V) vectors, respectively;

	for each head, computes the scaled dot product of each Q-K pair;

	applies mask to screen out positions that come from padding tokens
(indicated by 0 value);

	[in 'train' mode] applies dropout to Q-K dot products;

	for each head, computes Q-K attention strengths using a per-query softmax
of the Q-K dot products;

	for each head, for each query position, combines V vectors according
to the Q-K attention strengths; and

	concatenates and fuses resulting per-head vectors into outgoing
activations matching original input activation shapes.

	Parameters

	
	d_feature – Last/innermost dimension of activations in the input to and
output from this layer.

	n_heads – Number of attention heads. Attention heads effectively split
activation vectors into n_heads subvectors, of size
d_feature / n_heads.

	dropout – Probababilistic rate for attention dropout, which overrides
(sets to zero) some attention strengths derived from query-key
matching. As a result, on a given forward pass, some value vectors
don’t contribute to the output, analogous to how regular dropout can
cause some node activations to be ignored. Applies only if layer is
created in 'train' mode.

	mode – One of 'train', 'eval', or 'predict'.

	
trax.layers.attention.AttentionQKV(d_feature, n_heads=1, dropout=0.0, mode='train', cache_KV_in_predict=False, q_sparsity=None, result_sparsity=None)

	Returns a layer that maps (AQ, AK, AV, mask) to (new-A, mask).

Unlike Attention above, AttentionQKV allows the
incoming activations (AQ, AK, and AV) to come from different sources.
This is used, for instance, in encoder-decoder attention (Q-related
activations AQ from the decoder, K- and V-related activations – AK and
AV – from the encoder). Otherwise, see the Attention
description for further context/details.

	Parameters

	
	d_feature – Last/innermost dimension of activations in the input to and
output from this layer.

	n_heads – Number of attention heads. Attention heads effectively split
activation vectors into n_heads subvectors, of size
d_feature / n_heads.

	dropout – Probababilistic rate for attention dropout, which overrides
(sets to zero) some attention strengths derived from query-key
matching. As a result, on a given forward pass, some value vectors
don’t contribute to the output, analogous to how regular dropout can
cause some node activations to be ignored. Applies only if layer is
created in 'train' mode.

	mode – One of 'train', 'eval', or 'predict'.

	cache_KV_in_predict – Whether to cache K/V arrays in 'predict' mode.

	q_sparsity – Sparsity with which to process queries. If None,
Dense is used; if 'noop', no processing is used.

	result_sparsity – Sparsity with which to process result of the attention.
If None, Dense is used; if 'noop', no processing is
used.

	
class trax.layers.attention.PureAttention(n_heads=1, dropout=0.0, mode='train')

	Bases: trax.layers.base.Layer

Returns a layer that maps (Q, K, V, mask) to (activations, mask).

This layer type performs the inner workings of one pass of multi-head
self-attention. It:

	subdivides incoming Q/K/V activations into multi-head versions;

	for each head, computes the scaled dot product of each Q-K pair;

	applies mask to screen out positions that come from padding tokens
(indicated by 0 value);

	[in 'train' mode] applies dropout to Q-K dot products;

	for each head, computes Q-K attention strengths using a per-query softmax
of the Q-K dot products;

	for each head, for each query position, combines V vectors according
to the Q-K attention strengths; and

	concatenates and fuses resulting per-head vectors into outgoing
activations matching original input activation shapes.

	
__init__(n_heads=1, dropout=0.0, mode='train')

	Returns a new PureAttention instance.

	Parameters

	
	n_heads – Number of attention heads.

	dropout – Probababilistic rate for attention dropout, which overrides
(sets to zero) some attention strengths derived from query-key
matching. As a result, on a given forward pass, some value vectors
don’t contribute to the output, analogous to how regular dropout can
cause some node activations to be ignored. Applies only if layer is
created in 'train' mode.

	mode – One of 'train', 'eval', or 'predict'.

	
forward(inputs)

	Returns attention-computed activations and unmodified mask.

	Parameters

	inputs – A (Q, K, V, mask) tuple, whose query, key, and value
activations have not yet been subdivided into heads.

	
class trax.layers.attention.DotProductAttention(dropout=0.0, mode='train')

	Bases: trax.layers.base.Layer

Returns a layer that computes per-head attention (via scaled dot-product).

This layer computes the core of the attention mechanism. Given per-head
queries (Q), keys (K), values (V), and mask, it:

	computes the scaled dot product of each Q-K pair;

	applies mask to screen out positions that come from padding tokens
(indicated by 0 value);

	[if created in 'train' mode] applies dropout to Q-K dot products;

	computes Q-K attention strengths using a per-query softmax of the Q-K dot
products; and

	for each query position, combines V vectors according to the Q-K
attention strengths.

	
__init__(dropout=0.0, mode='train')

	Creates a DotProductAttention instance in a specific mode.

	Parameters

	
	dropout – Probababilistic rate for attention dropout, which overrides
(sets to zero) some attention strengths derived from query-key
matching. As a result, on a given forward pass, some value vectors
don’t contribute to the output, analogous to how regular dropout can
cause some node activations to be ignored. Applies only if layer is
created in 'train' mode.

	mode – One of 'train', 'eval', 'predict' or 'viz'.

	
forward(inputs)

	Returns attention-computed per-head activations and unchanged mask.

	Parameters

	inputs – A (Q, K, V, mask) tuple, whose query, key, and value
activations have been subdivided into heads.

	
trax.layers.attention.SplitIntoHeads(n_heads, merged_batch_and_head=True)

	Returns a layer that reshapes an array for multi-head computation.

	
trax.layers.attention.MergeHeads(n_heads, merged_batch_and_head=True)

	Returns a layer that rejoins heads, after multi-head computation.

	
trax.layers.attention.ConfigurableAttention(q_layer, k_layer, v_layer, final_layer, qkv_attention_layer, n_heads=1)

	Returns a configured multi-head self-attention layer.

A ConfigurableAttention layer acts similarly to
Attention layers, but with configurable components. It

	makes three copies of incoming activations and uses q_layer,
k_layer, and v_layer to map activations to multi-head query (Q)
vectors, key (K) vectors, and value (V) vectors, respectively;

	uses qkv_attention_layer to compute per-head attention, similar to
DotProductAttention or DotProductCausalAttention;

	concatenates and fuses resulting per-head vectors into activations
matching original input activation shapes; and

	applies a final layer, final_layer, mapping activations to
activations (with shape matching the original input activations).

	Parameters

	
	q_layer – Layer that maps input activations to per-head query activations.

	k_layer – Layer that maps input activations to per-head key activations.

	v_layer – Layer that maps input activations to per-head value activations.

	final_layer – After main multi-head computation and rejoining of heads,
layer that maps activations to activations (with shape matching the
original input activations).

	qkv_attention_layer – Layer the does the core multi-head self-attention
computation.

	n_heads – Number of attention heads. Attention heads effectively split
activation vectors into n_heads subvectors, of size
d_feature / n_heads.

	
trax.layers.attention.CausalAttention(d_feature, n_heads=1, dropout=0.0, max_inference_length=2048, mode='train')

	Returns a layer that maps activations to activations, with causal masking.

Like Attention, this layer type represents one pass of multi-head
self-attention, but with causal masking rather than padding-based masking.

	Parameters

	
	d_feature – Last/innermost dimension of activations in the input to and
output from this layer.

	n_heads – Number of attention heads. Attention heads effectively split
activation vectors into n_heads subvectors, of size
d_feature / n_heads.

	dropout – Probababilistic rate for attention dropout, which overrides
(sets to zero) some attention strengths derived from query-key
matching. As a result, on a given forward pass, some value vectors
don’t contribute to the output, analogous to how regular dropout can
cause some node activations to be ignored. Applies only if layer is
created in 'train' mode.

	max_inference_length – Maximum sequence length allowed in non-training
modes.

	mode – One of 'train', 'eval', or 'predict'.

	
class trax.layers.attention.DotProductCausalAttention(dropout=0.0, max_inference_length=2048, mode='train')

	Bases: trax.layers.base.Layer

Layer that computes attention strengths by masking out the “future”.

Causal attention uses masking to prevent a given sequence position from
attending to positions greater than / following it. This is used, for
example, when training autoregressive sequence models, or when decoding a
sequence symbol by symbol.

This layer performs the core per-head attention calculation. The layer
assumes that any splitting into attention heads precedes it, and that any
merging of attention heads will follow it.

	
__init__(dropout=0.0, max_inference_length=2048, mode='train')

	Creates a DotProductCausalAttention instance.

	Parameters

	
	dropout – Probababilistic rate for attention dropout, which overrides
(sets to zero) some attention strengths derived from query-key
matching. As a result, on a given forward pass, some value vectors
don’t contribute to the output, analogous to how regular dropout can
cause some node activations to be ignored. Applies only if layer is
created in 'train' mode.

	max_inference_length – Maximum sequence length allowed in non-training
modes.

	mode – One of 'train', 'eval', or 'predict'.

	
forward(inputs)

	Returns attention-computed activations.

	Parameters

	inputs – A (queries, keys, values) tuple.

	
init_weights_and_state(input_signature)

	Initializes this layer for fast inference, if in 'predict' mode.

	
trax.layers.attention.ShiftRight(n_positions=1, mode='train')

	Returns a layer that can insert padding to shift the input sequence.

	Parameters

	
	n_positions – Number of positions to shift the input sequence rightward;
initial positions freed by the shift get padded with zeros. Applies
only if layer is created in a non-'eval' mode.

	mode – One of 'train', 'eval', or 'predict'.

	
trax.layers.attention.PaddingMask(pad=0)

	Returns a layer that maps integer sequences to padding masks.

The layer expects as input a batch of integer sequences. The layer output is
an N-D array that marks for each sequence position whether the integer (e.g.,
a token ID) in that position represents padding – value pad – versus
text/content – all other values. The padding mask shape is
(batch_size, 1, 1, encoder_sequence_length), such that axis 1 will broadcast
to cover any number of attention heads and axis 2 will broadcast to cover
decoder sequence positions.

	Parameters

	pad – Integer that represents padding rather than a token/content ID.

	
trax.layers.attention.EncoderDecoderMask()

	Returns a layer that creates a mask for encoder-decoder cross attention.

The layer expects two inputs:

	decoder_input: batch of integer (e.g., token ID) sequences

	mask: padding mask from the encoder

The layer output is a mask that marks for each sequence position (for both
encoder and decoder) whether that position can be attended to or not. The
encoder-decoder mask shape is (batch_size, 1, decoder_sequence_length,
encoder_sequence_length), such that axis 1 will automatically broadcast to
cover any number of attention heads.

	
class trax.layers.attention.PositionalEncoding(max_len=2048, dropout=0.0, dropout_broadcast_dims=(-2,), use_bfloat16=False, start_from_zero_prob=1.0, max_offset_to_add=0, d_feature=None, mode='train')

	Bases: trax.layers.base.Layer

Implements bare positional encoding.

Positional encoding includes a kind of dropout, if the layer is created in
'train' mode with a nonzero dropout value. For such a layer, on each
forward pass a subset of sequence positions selected at random will not
receive positional marking.

	
__init__(max_len=2048, dropout=0.0, dropout_broadcast_dims=(-2,), use_bfloat16=False, start_from_zero_prob=1.0, max_offset_to_add=0, d_feature=None, mode='train')

	Creates a PositionalEncoding instance in a given mode.

	Parameters

	
	max_len – Maximum input sequence length.

	dropout – Probability of not adding positional encoding to a sequence
position. Applies only if layer is created in 'train' mode.

	dropout_broadcast_dims – Axes along which dropout mask values are
broadcast rather than individually set at random.

	use_bfloat16 – If True, use bfloat16 weights instead of the default
float32; this can save memory but may (rarely) lead to numerical issues.

	start_from_zero_prob – how often to start from 0 during training,
(if 1.0, we always start from position 0, if less, we randomize).

	max_offset_to_add – maximum offset to add to the positions during training
when randomizing; this offset plus input length must still be less than
max_len for all training examples.

	d_feature – int or None; have this dimension for embeddings + shared FF if
not None.

	mode – One of 'train', 'eval', or 'predict'.

	
forward(inputs)

	Returns the input activations, with added positional information.

	
init_weights_and_state(input_signature)

	Randomly initializes the positional encoding vectors.

	Parameters

	input_signature – ShapeDtype instance characterizing the input
this layer should compute on.

base

The key layer abstraction (Layer class) and supporting machinery.

	
class trax.layers.base.Layer(n_in=1, n_out=1, name=None, sublayers_to_print=None)

	Bases: object

Base class for composable layers in a deep learning network.

Layers are the basic building blocks for deep learning models. A layer
computes a function from zero or more inputs to zero or more outputs,
optionally using trainable weights (common) and non-parameter state (not
common).

Layer subclasses typically override at most two methods of the base Layer
class:

	forward(inputs):

	Computes the layer’s output as part of a forward pass through the model.

	init_weights_and_state(self, input_signature):

	Initializes the layer’s weights and state to handle input with the given
signature (number, shapes and dtypes of input arguments).

A small number of layer types are combinators – they organize the computation
of their sublayers, e.g., applying their sublayers in series or in parallel.

All layers have the following properties, with default values implemented
in the base Layer class:

	n_in: int (default 1)

	n_out: int (default 1)

	weights: tuple (default empty – the layer has no weights)

	state: tuple (default empty – the layer has no non-parameter state)

	sublayers: tuple (default empty – the layer has no sublayers)

The inputs to a layer are tensors, packaged according to how many there are:

	n_in = 0: an empty tuple

	n_in = 1: one tensor (NOT wrapped in a tuple)

	n_in > 1: a tuple of tensors

(The special treatment of the single-input case is meant to simplify the
work of layer writers; this design choice may be revisited in the future.)

The outputs from a layer are also tensors, packaged the same as layer inputs:

	n_out = 0: an empty tuple

	n_out = 1: the tensor (NOT wrapped in a tuple)

	n_out > 1: a tuple of tensors

The Trax runtime maintains a data stack with which layer calls are composed.
For more complex data network architectures, possibly involving multiple data
flows, one can view each layer as a function from stack state to stack state,
where the function’s inputs are a slice from the stack, and the function’s
outputs are spliced back into the stack.

	
__init__(n_in=1, n_out=1, name=None, sublayers_to_print=None)

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
__call__(x, weights=None, state=None, rng=None)

	Makes layers callable; for use in tests or interactive settings.

This convenience method helps library users play with, test, or otherwise
probe the behavior of layers outside of a full training environment. It
presents the layer as callable function from inputs to outputs, with the
option of manually specifying weights and non-parameter state per individual
call. For convenience, weights and non-parameter state are cached per layer
instance, starting from default values of EMPTY_WEIGHTS and EMPTY_STATE,
and acquiring non-empty values either by initialization or from values
explicitly provided via the weights and state keyword arguments, in which
case the old weights will be preserved, and the state will be updated.

	Parameters

	
	x – Zero or more input tensors, packaged as described in the Layer class
docstring.

	weights – Weights or None; if None, use self’s cached weights value.

	state – State or None; if None, use self’s cached state value.

	rng – Single-use random number generator (JAX PRNG key), or None;
if None, use a default computed from an integer 0 seed.

	Returns

	Zero or more output tensors, packaged as described in the Layer class
docstring.

	
forward(inputs)

	Computes this layer’s output as part of a forward pass through the model.

A layer subclass overrides this method to define how the layer computes
outputs from inputs. If the layer depends on weights, state, or randomness
as part of the computation, the needed information can be accessed as
properties of the layer object: self.weights, self.state, and
self.rng. (See numerous examples in trax.layers.core.)

	Parameters

	inputs – Zero or more input tensors, packaged as described in the Layer
class docstring.

	Returns

	Zero or more output tensors, packaged as described in the Layer class
docstring.

	
init_weights_and_state(input_signature)

	Initializes weights and state, to handle input with the given signature.

A layer subclass must override this method if the layer uses weights or
state. To initialize weights, set self.weights to desired (typically
random) values. To initialize state (uncommon), set self.state to desired
starting values.

	Parameters

	input_signature – A ShapeDtype instance (if this layer takes one input)
or a list/tuple of ShapeDtype instances.

	
has_backward

	Returns True if this layer provides its own custom backward pass code.

A layer subclass that provides custom backward pass code (for custom
gradients) must override this method to return True.

	
backward(inputs, output, grad, weights, state, new_state, rng)

	Custom backward pass to propagate gradients in a custom way.

	Parameters

	
	inputs – Input tensors; can be a (possibly nested) tuple.

	output – The result of running this layer on inputs.

	grad – Gradient signal computed based on subsequent layers; its structure
and shape must match output.

	weights – This layer’s weights.

	state – This layer’s state prior to the current forward pass.

	new_state – This layer’s state after the current forward pass.

	rng – Single-use random number generator (JAX PRNG key).

	Returns

	The custom gradient signal for the input. Note that we need to return
a gradient for each argument of forward, so it will usually be a tuple
of signals: the gradient for inputs and weights.

	
init(input_signature, rng=None, use_cache=False)

	Initializes weights/state of this layer and its sublayers recursively.

Initialization creates layer weights and state, for layers that use them.
It derives the necessary array shapes and data types from the layer’s input
signature, which is itself just shape and data type information.

For layers without weights or state, this method safely does nothing.

This method is designed to create weights/state only once for each layer
instance, even if the same layer instance occurs in multiple places in the
network. This enables weight sharing to be implemented as layer sharing.

	Parameters

	
	input_signature – ShapeDtype instance (if this layer takes one input)
or list/tuple of ShapeDtype instances.

	rng – Single-use random number generator (JAX PRNG key), or None;
if None, use a default computed from an integer 0 seed.

	use_cache – If True, and if this layer instance has already been
initialized elsewhere in the network, then return special marker
values – tuple (GET_WEIGHTS_FROM_CACHE, GET_STATE_FROM_CACHE).
Else return this layer’s newly initialized weights and state.

	Returns

	A (weights, state) tuple.

	
init_from_file(file_name, weights_only=False, input_signature=None)

	Initializes this layer and its sublayers from a pickled checkpoint.

In the common case (weights_only=False), the file must be a gziped pickled
dictionary containing items with keys ‘flat_weights’, `’flat_state’ and
‘input_signature’, which are used to initialize this layer.
If input_signature is specified, it’s used instead of the one in the file.
If weights_only is True, the dictionary does not need to have the
‘flat_state’ item and the state it not restored either.

	Parameters

	
	file_name – Name/path of the pickled weights/state file.

	weights_only – If True, initialize only the layer’s weights. Else
initialize both weights and state.

	input_signature – Input signature to be used instead of the one from file.

	Returns

	A (weights, state) tuple.

	
save_to_file(file_name, weights_only=False, input_signature=None)

	Saves this layer and its sublayers to a pickled checkpoint.

	Parameters

	
	file_name – Name/path of the pickled weights/state file.

	weights_only – If True, save only the layer’s weights. Else
save both weights and state.

	input_signature – Input signature to be used.

	
name

	Returns the name of this layer.

	
n_in

	Returns how many tensors this layer expects as input.

	
n_out

	Returns how many tensors this layer promises as output.

	
sublayers

	Returns a tuple containing this layer’s sublayers; may be empty.

	
weights

	Returns this layer’s weights.

Depending on the layer, the weights can be in the form of:

	an empty tuple

	a tensor (ndarray)

	a nested structure of tuples and tensors

If the layer has sublayers, the weights by convention will be
a tuple of length len(sublayers) containing the weights of sublayers.
Note that in this case self._weights only marks which ones are shared.

	
state

	Returns a tuple containing this layer’s state; may be empty.

If the layer has sublayers, the state by convention will be
a tuple of length len(sublayers) containing sublayer states.
Note that in this case self._state only marks which ones are shared.

	
weights_and_state_signature(input_signature, unsafe=False)

	Return a pair containing the signatures of weights and state.

	
rng

	Returns this layer’s current single-use random number generator.

Code that wants to base random samples on this generator must explicitly
split off new generators from it. (See, for example, the rng setter code
below.)

	
pure_fn(x, weights, state, rng, use_cache=False)

	Applies this layer as a pure function with no optional args.

This method exposes the layer’s computation as a pure function. This is
especially useful for JIT compilation. Do not override, use forward
instead.

	Parameters

	
	x – Zero or more input tensors, packaged as described in the Layer class
docstring.

	weights – A tuple or list of trainable weights, with one element for this
layer if this layer has no sublayers, or one for each sublayer if
this layer has sublayers. If a layer (or sublayer) has no trainable
weights, the corresponding weights element is an empty tuple.

	state – Layer-specific non-parameter state that can update between batches.

	rng – Single-use random number generator (JAX PRNG key).

	use_cache – if True, cache weights and state in the layer object; used
to implement layer sharing in combinators.

	Returns

	A tuple of (tensors, state). The tensors match the number (n_out)
promised by this layer, and are packaged as described in the Layer
class docstring.

	
output_signature(input_signature)

	Returns output signature this layer would give for input_signature.

	
class trax.layers.base.PureLayer(forward_fn, n_in=1, n_out=1, name='PureLayer')

	Bases: trax.layers.base.Layer

Pure function from inputs to outputs, packaged as neural network layer.

The PureLayer class represents the simplest kinds of layers: layers with
no trainable weights and no randomness, hence pure functions from inputs to
outputs.

	
__init__(forward_fn, n_in=1, n_out=1, name='PureLayer')

	Creates an unconnected PureLayer instance.

	Parameters

	
	forward_fn – Pure function from input tensors to output tensors, where
inputs and outputs are packaged as specified for forward.

	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use only in debugging.

	
forward(inputs)

	Overrides Layer.forward.

	Parameters

	inputs – Zero or more input tensors, packaged as described in the Layer
class docstring.

	Returns

	Zero or more output tensors, packaged as described in the Layer class
docstring.

	
trax.layers.base.Fn(name, f, n_out=1)

	Returns a layer with no weights that applies the function f.

f can take and return any number of arguments, and takes only positional
arguments – no default or keyword arguments. It often uses JAX-numpy (jnp).
The following, for example, would create a layer that takes two inputs and
returns two outputs – element-wise sums and maxima:

Fn(‘SumAndMax’, lambda x0, x1: (x0 + x1, jnp.maximum(x0, x1)), n_out=2)

The layer’s number of inputs (n_in) is automatically set to number of
positional arguments in f, but you must explicitly set the number of
outputs (n_out) whenever it’s not the default value 1.

	Parameters

	
	name – Class-like name for the resulting layer; for use in debugging.

	f – Pure function from input tensors to output tensors, where each input
tensor is a separate positional arg, e.g., f(x0, x1) –> x0 + x1.
Output tensors must be packaged as specified in the Layer class
docstring.

	n_out – Number of outputs promised by the layer; default value 1.

	Returns

	Layer executing the function f.

	
exception trax.layers.base.LayerError(layer_name, function_name, caller, input_signature, traceback_string)

	Bases: Exception

Exception raised in the layer stack.

	
__init__(layer_name, function_name, caller, input_signature, traceback_string)

	Initialize self. See help(type(self)) for accurate signature.

	
message

	Assembles current layer context into an error message.

	
trax.layers.base.flatten_weights_and_state(weights, state)

	Flatten weights and state into lists, excluding empty and cached ones.

	
trax.layers.base.unflatten_weights_and_state(flat_weights, flat_state, weights_and_state_signature, weights_only=False)

	Unflatten weights and state given their signatures.

	
trax.layers.base.np_to_file(list_of_nparrays, file_path, compresslevel)

	Save numpy arrays to file_path with gzipping and failure protection.

	
trax.layers.base.np_from_file(file_path, compresslevel)

	Load numpy arrays from file_path with gzipping.

	
trax.layers.base.to_list(outputs)

	Converts layer outputs to a nested list, for easier equality testing.

	Parameters

	outputs – A tensor or tuple/list of tensors coming from the forward
application of a layer. Each tensor is NumPy ndarray-like, which
complicates simple equality testing (e.g., via assertEquals):
such tensors require equality testing to use either all (all
elements match) or any (at least one element matches), which is not
directly supported in absltest.

	Returns

	A nested list structure containing all the output values, but now directly
testable using assertEquals.

	
trax.layers.base.shard(tensors, n_shards=None)

	Shard tensors across n_shards.

	
trax.layers.base.unshard_in_pmap(tensors, n_shards)

	Unshard tensors that were sharded into n_shards (call inside pmap).

	
trax.layers.base.unshard(tensors, n_shards=None)

	Unshard tensors that were sharded into n_shards (outside of pmap).

combinators

Combinators for composing layers.

	
class trax.layers.combinators.Serial(*sublayers, name=None, sublayers_to_print=None)

	Bases: trax.layers.base.Layer

Combinator that applies layers serially (by function composition).

This combinator is commonly used to construct deep networks, e.g., like this:

mlp = tl.Serial(
 tl.Dense(128),
 tl.Relu(),
 tl.Dense(10),
)

A Serial combinator uses stack semantics to manage data for its sublayers.
Each sublayer sees only the inputs it needs and returns only the outputs it
has generated. The sublayers interact via the data stack. For instance, a
sublayer k, following sublayer j, gets called with the data stack in the
state left after layer j has applied. The Serial combinator then:

	takes n_in items off the top of the stack (n_in = k.n_in) and calls
layer k, passing those items as arguments; and

	takes layer k’s n_out return values (n_out = k.n_out) and pushes
them onto the data stack.

A Serial instance with no sublayers acts as a special-case (but useful)
1-input 1-output no-op.

	
__init__(*sublayers, name=None, sublayers_to_print=None)

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
forward(xs)

	Executes this layer as part of a forward pass through the model.

	
init_weights_and_state(input_signature)

	Initializes weights and state for inputs with the given signature.

	
class trax.layers.combinators.Parallel(*sublayers, name=None)

	Bases: trax.layers.base.Layer

Combinator that applies a list of layers in parallel to its inputs.

Layers in the list apply to successive spans of inputs, where the spans are
determined how many inputs each layer takes. The resulting output is the
(flattened) concatenation of the respective layer outputs.

For example, suppose one has three layers:

	F: 1 input, 1 output

	G: 3 inputs, 1 output

	H: 2 inputs, 2 outputs (h1, h2)

Then Parallel(F, G, H) will take 6 inputs and give 4 outputs:

	inputs: a, b, c, d, e, f

	outputs: F(a), G(b, c, d), h1, h2 where h1, h2 = H(e, f)

As an important special case, a None argument to Parallel acts as if it takes
one argument, which it leaves unchanged. (It acts as a one-arg no-op.) For
.. rubric:: Example

Parallel(None, F)

creates a layer that passes its first input unchanged and applies F to the
following input(s).

	
__init__(*sublayers, name=None)

	The constructor.

	Parameters

	
	*sublayers – A list of sublayers.

	name – Descriptive name for this layer.

	Returns

	A new layer in which each of the given sublayers applies to its
corresponding span of elements in the dataflow stack.

	
forward(inputs)

	Executes this layer as part of a forward pass through the model.

	
init_weights_and_state(input_signature)

	Initializes weights and state for inputs with the given signature.

	
class trax.layers.combinators.Concatenate(n_items=2, axis=-1)

	Bases: trax.layers.base.Layer

Concatenates a number of tensors into a single tensor.

For example:

x = np.array([1, 2])
y = np.array([3, 4])
z = np.array([5, 6])
concat3 = tl.Concatenate(n_items=3)
z = concat3((x, y, z)) # z = [1, 2, 3, 4, 5, 6]

Use the axis argument to specify on which axis to concatenate the tensors.
By default it’s the last axis, axis=-1, and n_items=2.

	
__init__(n_items=2, axis=-1)

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
forward(xs)

	Executes this layer as part of a forward pass through the model.

	
class trax.layers.combinators.Split(n_items=2, axis=-1)

	Bases: trax.layers.base.Layer

Splits the input into n items along an axis.

	
__init__(n_items=2, axis=-1)

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
forward(inputs)

	Executes this layer as part of a forward pass through the model.

	
class trax.layers.combinators.Scan(layer, axis=0, n_carry=1, remat=False, mode='train')

	Bases: trax.layers.base.Layer

Applies a layer progressively/cumulatively to an axis-derived sequence.

Conceptually, this is a function from a list to a same-length list of partial
(cumulative) results. For instance, a list of values ([1, 2, 3, 4, 5]) can
transform to a list of cumulative sums ([1, 3, 6, 10, 15]). Functions for
the same concept are called scan in Scala, scanl in Haskell, and
accumulate* in Factor.

In more detail, we assume the layer takes a tuple of inputs of the following
form:

(input1, …, inputN, carry1, …, carryM)

and returns:

(output1, …, outputK, new_carry1, …, new_carryM)

The scanned version applies the layer iteratively to a tensor treating values
at the given axis as if they were a list. For example, to calculate all
sums of prefixes of a tensor, we can do this:

def add(x, carry):
 def f(input, carry):
 res = input + carry
 return res, res # output and carry are the same
 return tl.Fn('add', f, n_out=2)

Scan(add)([1, 2, 3], 0) = [1, 3, 6], 6

	
__init__(layer, axis=0, n_carry=1, remat=False, mode='train')

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
sublayer

	Returns the unique sublayer managed by this layer.

	
state

	Returns a tuple containing this layer’s state.

	
forward(inputs)

	Executes this layer as part of a forward pass through the model.

	
init_weights_and_state(input_signature)

	Initializes weights and state for inputs with the given signature.

	
class trax.layers.combinators.Cond(cond, true, false=None, name=None)

	Bases: trax.layers.base.Layer

Applies layers conditionally.

For parameters cond, true, and false runs the equivalent of true(y)
if cond(x) else false(y), where x is cond.n_in elements from front of the
stack and y is the rest of the stack.
Exactly one of true and false functions is executed, so it can be used to
conditionally run long computations. The state of non-executed function is not
updated. Note that different branches may be executed on different devices
if cond returns different values on them.
By default ‘false’ function is an identity.

cond must return exactly one element: a Boolean value.
true and false must have the same n_in, and the same n_out.

	
__init__(cond, true, false=None, name=None)

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
init_weights_and_state(input_signature)

	Initializes weights and state for inputs with the given signature.

	
forward(xs)

	Executes this layer as part of a forward pass through the model.

	Parameters

	xs – Tensors of as required by the branches of this conditional.

	Returns

	Tensors resulting from running the chosen branch.

	
trax.layers.combinators.Chunk(layer, chunk_size, pass_unchunkable=True)

	Executes layer using batch chunks of size chunk_size to save memory.

	
trax.layers.combinators.Branch(*layers, name='Branch')

	Combinator that applies a list of layers in parallel to copies of inputs.

Each layer in the input list is applied to as many inputs from the stack
as it needs, and their outputs are successively combined on stack.

For example, suppose one has three layers:

	F: 1 input, 1 output

	G: 3 inputs, 1 output

	H: 2 inputs, 2 outputs (h1, h2)

Then Branch(F, G, H) will take 3 inputs and give 4 outputs:

	inputs: a, b, c

	outputs: F(a), G(a, b, c), h1, h2 where h1, h2 = H(a, b)

As an important special case, a None argument to Branch acts as if it takes
one argument, which it leaves unchanged. (It acts as a one-arg no-op.)

	Parameters

	
	*layers – List of layers.

	name – Descriptive name for this layer.

	Returns

	A branch layer built from the given sublayers.

	
trax.layers.combinators.Residual(*layers, shortcut=None)

	Wraps a series of layers with a residual connection.

	Parameters

	
	*layers – One or more layers, to be applied in series.

	shortcut – If None (the usual case), the Residual layer computes the
element-wise sum of the stack-top input with the output of the layer
series. If specified, the shortcut layer applies to a copy of the
inputs and (elementwise) adds its output to the output from the main
layer series.

	Returns

	A layer representing a residual connection paired with a layer series.

	
trax.layers.combinators.Select(indices, n_in=None, name=None)

	Copies, reorders, or deletes stack elements according to indices.

	Parameters

	
	indices – A list or tuple of 0-based indices to select elements relative to
the top of the stack.

	n_in – Number of input elements to pop from the stack, and replace with
those specified by indices. If not specified, its value will be
calculated as max(indices) + 1.

	name – Descriptive name for this layer.

	Returns

	Tensors, matching the number selected (n_out = len(indices)).
Specifically:

	n_out = 0: an empty tuple

	n_out = 1: one tensor (NOT wrapped in a tuple)

	n_out > 1: a tuple of tensors, with n_out items

	
trax.layers.combinators.Drop()

	Drops the top stack element.

	
trax.layers.combinators.Dup()

	Duplicates (copies) the top element on the data stack.

	
trax.layers.combinators.Swap()

	Swaps the top two stack elements.

	
trax.layers.combinators.SerialWithSideOutputs(layers, n_side_outputs=1)

	Serial layer with side outputs.

This layer makes it easier to manage the stack when layers have side outputs.

In the simplest case of layers with n_in=1, n_out=2 and with
n_side_outputs=1, this layer runs the following computation on x:

side_outputs = []
for i in range(len(layers)):
 x, side_output = layers[i](x)
 side_outputs.append(side_output)
return [x] + side_outputs

In the general case of layers with variable n_in and n_out and
n_side_outputs being a list of N integers, it does the following:

side_outputs = []
for i in range(N):
 res = layer[i](cur_stack) # remove n_in from stack
 cur_stack.append(res[:n_side_outputs[i]]) # put back some on stack
 side_outputs.extend(res[n_side_outputs:])
return cur_stack + side_outputs

	Parameters

	
	layers – a list of layers to execute

	n_side_outputs – an int or a list of ints, how many outputs of each layer
to put aside

	Returns

	A layer that performs the above computation.

	
trax.layers.combinators.FlattenList()

	Flatten lists.

	
trax.layers.combinators.Add()

	Adds two tensors.

	
trax.layers.combinators.SubtractTop()

	Subtracts the first tensor from the second.

	
trax.layers.combinators.Multiply()

	Multiplies two tensors.

	
trax.layers.combinators.Gate()

	Returns a gating layer on a (memory, gate, candidate) tuple.

Final update is memory * gate + (1 - gate) * candidate

This gating equation may also be referred to as Highway Network.
Highway Networks: https://arxiv.org/abs/1505.00387

	
class trax.layers.combinators.Cache(layer)

	Bases: trax.layers.base.Layer

Applies a layer on the first run and returns the outputs on next calls.

	
__init__(layer)

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
sublayer

	Returns the unique sublayer managed by this layer.

	
state

	Returns a tuple containing this layer’s state; may be empty.

	
init_weights_and_state(input_signature)

	Initializes weights and state for inputs with the given signature.

	
forward(inputs)

	Executes this layer as part of a forward pass through the model.

	Parameters

	inputs – Tensors required by the sublayer.

	Returns

	Tensors resulting from running the sublayer the first time.

	
class trax.layers.combinators.BatchLeadingAxes(layer, n_last_axes_to_keep=1)

	Bases: trax.layers.base.Layer

Applies a layer after flattening all but n_last_axes_to_keep to batch.

This can be used to make layers accept an arbitrary number of leading
axes (dimensions) as batch. For example, a Convolution layer may normally
only operate on tensors of shape [B, W, H, C]. In this case, the layer

BatchLeadingAxes(Convolution(), n_last_axes_to_keep=3)

will operate on any tensor […, W, H, C] and treat the leading axes as batch.

	
__init__(layer, n_last_axes_to_keep=1)

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
sublayer

	Returns the unique sublayer managed by this layer.

	
forward(inputs)

	Executes this layer as part of a forward pass through the model.

	
init_weights_and_state(input_signature)

	Initializes weights and state for inputs with the given signature.

	
trax.layers.combinators.inputs_from_stack(stack, n)

	Returns n inputs from stack.

	
trax.layers.combinators.outputs_onto_stack(outputs, stack, n)

	“Returns the new stack after removing n items and pushing outputs there.

convolution

Trax convolution layers.

	
class trax.layers.convolution.Conv(filters, kernel_size, strides=None, padding='VALID', dimension_numbers=('NHWC', 'HWIO', 'NHWC'), kernel_initializer=None, bias_initializer=<function RandomNormalInitializer.<locals>.<lambda>>, use_bias=True)

	Bases: trax.layers.base.Layer

Layer constructor function for a general convolution layer.

	
__init__(filters, kernel_size, strides=None, padding='VALID', dimension_numbers=('NHWC', 'HWIO', 'NHWC'), kernel_initializer=None, bias_initializer=<function RandomNormalInitializer.<locals>.<lambda>>, use_bias=True)

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
forward(x)

	Computes this layer’s output as part of a forward pass through the model.

A layer subclass overrides this method to define how the layer computes
outputs from inputs. If the layer depends on weights, state, or randomness
as part of the computation, the needed information can be accessed as
properties of the layer object: self.weights, self.state, and
self.rng. (See numerous examples in trax.layers.core.)

	Parameters

	inputs – Zero or more input tensors, packaged as described in the Layer
class docstring.

	Returns

	Zero or more output tensors, packaged as described in the Layer class
docstring.

	
init_weights_and_state(input_signature)

	Initializes weights and state, to handle input with the given signature.

A layer subclass must override this method if the layer uses weights or
state. To initialize weights, set self.weights to desired (typically
random) values. To initialize state (uncommon), set self.state to desired
starting values.

	Parameters

	input_signature – A ShapeDtype instance (if this layer takes one input)
or a list/tuple of ShapeDtype instances.

	
class trax.layers.convolution.CausalConv(filters, kernel_width=3, kernel_initializer=None, bias_initializer=<function RandomNormalInitializer.<locals>.<lambda>>, use_bias=True)

	Bases: trax.layers.convolution.Conv

Causal (masked) convolution for [batch x time x depth] sequences.

Maintains causality along time axis. Used in language modeling tasks.

	
__init__(filters, kernel_width=3, kernel_initializer=None, bias_initializer=<function RandomNormalInitializer.<locals>.<lambda>>, use_bias=True)

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
forward(x)

	Computes this layer’s output as part of a forward pass through the model.

A layer subclass overrides this method to define how the layer computes
outputs from inputs. If the layer depends on weights, state, or randomness
as part of the computation, the needed information can be accessed as
properties of the layer object: self.weights, self.state, and
self.rng. (See numerous examples in trax.layers.core.)

	Parameters

	inputs – Zero or more input tensors, packaged as described in the Layer
class docstring.

	Returns

	Zero or more output tensors, packaged as described in the Layer class
docstring.

	
trax.layers.convolution.Conv1d(filters, kernel_size, stride=1, padding='VALID', kernel_initializer=None, bias_initializer=<function RandomNormalInitializer.<locals>.<lambda>>, use_bias=True)

	

core

Core layer types and key functions used by various layers.

	
class trax.layers.core.Dense(n_units, kernel_initializer=<function ScaledInitializer.<locals>.Init>, bias_initializer=<function RandomNormalInitializer.<locals>.<lambda>>, use_bias=True, use_bfloat16=False)

	Bases: trax.layers.base.Layer

A dense (a.k.a. fully-connected, affine) layer.

Dense layers are the prototypical example of a trainable layer, i.e., a layer
with trainable weights. Each node in a dense layer computes a weighted sum of
all node values from the preceding layer and adds to that sum a node-specific
bias term. The full layer computation is expressed compactly in linear
algebra as an affine map y = Wx + b, where W is a matrix and y, x,
and b are vectors. The layer is trained, or “learns”, by updating the
values in W and b.

Less commonly, a dense layer can omit the bias term and be a pure linear map:
y = Wx.

	
__init__(n_units, kernel_initializer=<function ScaledInitializer.<locals>.Init>, bias_initializer=<function RandomNormalInitializer.<locals>.<lambda>>, use_bias=True, use_bfloat16=False)

	Returns a dense (fully connected) layer of width n_units.

A dense layer maps collections of R^m vectors to R^n, where n
(= n_units) is fixed at layer creation time, and m is set at layer
initialization time.

	Parameters

	
	n_units – Number of nodes in the layer, also known as the width of the
layer.

	kernel_initializer – Function that creates a matrix of (random) initial
connection weights W for the layer.

	bias_initializer – Function that creates a vector of (random) initial
bias weights b for the layer.

	use_bias – If True, compute an affine map y = Wx + b; else compute
a linear map y = Wx.

	use_bfloat16 – If True, use bfloat16 weights instead of the default
float32; this can save memory but may (rarely) lead to numerical issues.

	
forward(x)

	Executes this layer as part of a forward pass through the model.

	Parameters

	x – Tensor of same shape and dtype as the input signature used to
initialize this layer.

	Returns

	Tensor of same shape and dtype as the input, except the final dimension
is the layer’s n_units value.

	
init_weights_and_state(input_signature)

	Randomly initializes this layer’s weights.

Weights are a (w, b) tuple for layers created with use_bias=True (the
default case), or a w tensor for layers created with use_bias=False.

	Parameters

	input_signature – ShapeDtype instance characterizing the input this layer
should compute on.

	
class trax.layers.core.Embedding(vocab_size, d_feature, use_bfloat16=False, kernel_initializer=<function ScaledInitializer.<locals>.Init>)

	Bases: trax.layers.base.Layer

Trainable layer that maps discrete tokens/IDs to vectors.

Embedding layers are commonly used to map discrete data, like words in NLP,
into vectors. Here is a canonical example:

vocab_size = 5
word_ids = np.array([1, 2, 3, 4], dtype=np.int32) # word_ids < vocab_size
embedding_layer = tl.Embedding(vocab_size, 32)
embedding_layer.init(trax.shapes.signature(word_ids))
embedded = embedding_layer(word_ids) # embedded.shape = (4, 32)

	
__init__(vocab_size, d_feature, use_bfloat16=False, kernel_initializer=<function ScaledInitializer.<locals>.Init>)

	Returns an embedding layer with given vocabulary size and vector size.

The layer clips input values (token IDs) to the range [0, vocab_size).
That is, negative token IDs all clip to 0 before being mapped to a
vector, and token IDs with value vocab_size or greater all clip to
vocab_size - 1 before being mapped to a vector.

	Parameters

	
	vocab_size – Size of the input vocabulary. The layer will assign a unique
vector to each id in range(vocab_size).

	d_feature – Dimensionality/depth of the output vectors.

	use_bfloat16 – If True, use bfloat16 weights instead of the default
float32; this can save memory but may (rarely) lead to numerical issues.

	kernel_initializer – Function that creates (random) initial vectors for
the embedding.

	
forward(x)

	Returns embedding vectors corresponding to input token IDs.

	Parameters

	x – Tensor of token IDs.

	Returns

	Tensor of embedding vectors.

	
init_weights_and_state(input_signature)

	Randomly initializes this layer’s weights.

	
class trax.layers.core.Dropout(rate=0.0, shared_axes=None, mode='train')

	Bases: trax.layers.base.Layer

A layer that stochastically ignores a subset of inputs each training step.

In training, to compensate for the fraction of input values dropped (rate),
all surviving values are multiplied by 1 / (1 - rate).

The parameter shared_axes allows to specify a list of axes on which
the mask will be shared: we will use size 1 on those axes for dropout mask
and broadcast it. Sharing reduces randomness, but can save memory.

This layer is active only during training (mode=’train’). In other
circumstances it is a no-op.

Originally introduced in the paper “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting” available under the following link:
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

	
__init__(rate=0.0, shared_axes=None, mode='train')

	Creates a dropout layer with the given target drop rate.

	Parameters

	
	rate – Stochastic rate (probability) for dropping an activation value
from the preceding layer (setting it to zero).

	shared_axes – List of axes on which the mask is shared.

	mode – If ‘train’, this layer will perform dropout; else, it will pass
all values through unaltered.

	
init_weights_and_state(input_signature)

	Sets layer-specific internal state.

	
forward(x)

	Executes this layer as part of a forward pass through the model.

	Parameters

	x – Tensor of activations.

	Returns

	Tensor of same shape and dtype as the input.

	
class trax.layers.core.Weights(initializer, shape=(), use_bfloat16=False)

	Bases: trax.layers.base.Layer

Learnable weights as a layer.

It takes no input and returns a single tensor: weights.

	
__init__(initializer, shape=(), use_bfloat16=False)

	Returns a learnable tensor of shape shape.

	Parameters

	
	initializer – Function taking shape and rng as arguments.

	shape – Shape of the learnable weights.

	use_bfloat16 – If True, use bfloat16 weights instead of the default
float32; this can save memory but may (rarely) lead to numerical issues.

	
forward(x)

	Executes this layer as part of a forward pass through the model.

	Parameters

	x – Tensor of same shape and dtype as the input signature used to
initialize this layer.

	Returns

	Tensor with previously specified shape and dtype.

	
init_weights_and_state(input_signature)

	Returns newly initialized weights for this layer.

Weights is a single w tensor with previously specified shape.

	Parameters

	input_signature – ShapeDtype instance characterizing the input this layer
should compute on. Unused.

	
trax.layers.core.PrintShape(n_in=1, msg='')

	Prints the shapes of n_in inputs and returns then unchanged.

	
class trax.layers.core.SummaryImage(name, n_in, num_summaries=5, recover_fn=None)

	Bases: trax.layers.base.Layer

A layer receiving a tensor, and adding it to TensorBoard as an image.

It takes an input and returns it unchanged. It stores this input as a state to
be used as a metric in TensorBoard.
It converts a tensor to a scalar by running a given aggregation function (mean
by default). On TensorBoard, results for each device will be reported
separately.

	
__init__(name, n_in, num_summaries=5, recover_fn=None)

	Takes a tensor and returns it.

	Parameters

	
	name – Name of the metric to be reported.

	n_in – Number of inputs.

	num_summaries – Number of images to show.

	recover_fn – the function for converting a tensor to a dipslayable image.

	
forward(x)

	Executes this layer as part of a forward pass through the model.

	Parameters

	x – Tensor of same shape and dtype as the input signature used to
initialize this layer.

	Returns

	Tensor with previously specified shape and dtype.

	
init_weights_and_state(input_signature)

	Returns newly initialized weights for this layer.

Weights is a single w tensor with previously specified shape.

	Parameters

	input_signature – ShapeDtype instance characterizing the input this layer
should compute on. Unused.

	
class trax.layers.core.SummaryScalar(name, aggregation_fun=<sphinx.ext.autodoc.importer._MockObject object>)

	Bases: trax.layers.base.Layer

A layer receiving a tensor, and adding it to TensorBoard as a scalar.

It takes an input and returns it unchanged. It stores this input as a state to
be used as a metric in TensorBoard.
It converts a tensor to a scalar by running a given aggregation function (mean
by default). On TensorBoard, results for each device will be reported
separately.

	
__init__(name, aggregation_fun=<sphinx.ext.autodoc.importer._MockObject object>)

	Takes a tensor and returns it.

	Parameters

	
	name – Name of the metric to be reported.

	aggregation_fun – Aggregation function to be used.

	
forward(x)

	Executes this layer as part of a forward pass through the model.

	Parameters

	x – Tensor of same shape and dtype as the input signature used to
initialize this layer.

	Returns

	Tensor with previously specified shape and dtype.

	
init_weights_and_state(input_signature)

	Returns newly initialized weights for this layer.

Weights is a single w tensor with previously specified shape.

	Parameters

	input_signature – ShapeDtype instance characterizing the input this layer
should compute on. Unused.

	
class trax.layers.core.RandomUniform(min_val=0.0, max_val=1.0, shape=(), dtype=<sphinx.ext.autodoc.importer._MockObject object>, sync=False)

	Bases: trax.layers.base.Layer

Layer returning a tensor with random values distributed uniformly.

	
__init__(min_val=0.0, max_val=1.0, shape=(), dtype=<sphinx.ext.autodoc.importer._MockObject object>, sync=False)

	Layer returning a tensor with random values distributed uniformly.

	Parameters

	
	min_val – Lower end of uniform distribution.

	max_val – Upper end of uniform distribution.

	shape – Shape of the tensor to return. Values are sampled independently.

	dtype – Type of value to return.

	sync – Whether to synchronise rng across devices.

	
forward(xs)

	Executes this layer as part of a forward pass through the model.

	Parameters

	xs – Unused tensors.

	Returns

	Random uniform tensor of the shape and type specified in constructor.

	
class trax.layers.core.LocallyConnected1d(filters, kernel_size, kernel_initializer=<function ScaledInitializer.<locals>.Init>, bias_initializer=<function RandomNormalInitializer.<locals>.<lambda>>, use_bias=True, padding='VALID')

	Bases: trax.layers.base.Layer

Locally-connected layer for 1D inputs.

The LocallyConnected1d layer applies a different set of filters to each patch
of the input. This is similar to applying a convolution layer, except that
locally-connected layer uses a different set of weights for each patch.

The size of patch is determined by the kernel size. The stride is currently
not modifiable and set to one. This means for the input of shape (…, L, D)
the output shape for paddings ‘SAME’ and ‘WRAP’ will be (…, L, filters) and
for padding ‘VALID’ (…, L-kernel_size+1, filters); where L is the number of
“pixels” or “steps” in the input, D is the size of the embedding.

Note that, since the weights for different patches are not shared, the number
of “pixels” or “steps” cannot change after calling init_weights_and_state.
This is because each “pixel” is assigned its own set of weights.

	
__init__(filters, kernel_size, kernel_initializer=<function ScaledInitializer.<locals>.Init>, bias_initializer=<function RandomNormalInitializer.<locals>.<lambda>>, use_bias=True, padding='VALID')

	Returns a locally-connected conv-like layer.

	Parameters

	
	filters – Number of output filters in the convolution.

	kernel_size – A length of the convolution window. Must be an odd number.

	kernel_initializer – Function that creates a matrix of (random) initial
connection weights W for the layer.

	bias_initializer – Function that creates a vector of (random) initial
bias weights b for the layer.

	use_bias – If True, the layer uses a bias vector.

	padding – The type of padding to use; must be ‘VALID’, ‘SAME’, or ‘WRAP’.

	
forward(x)

	Executes this layer as part of a forward pass through the model.

	Parameters

	x – Tensor of same shape and dtype as the input signature used to
initialize this layer.

	Returns

	Tensor of same shape and dtype as the input, except the final dimension
is the layer’s filters value, and the second to last dimension is
shrinked if ‘VALID’ padding is used with kernel_size bigger than one.

	
init_weights_and_state(input_signature)

	Randomly initializes this layer’s weights.

Weights are a (w, b) tuple for layers created with use_bias=True (the
default case), or a w tensor for layers created with use_bias=False.

	Parameters

	input_signature – ShapeDtype instance characterizing the input this layer
should compute on.

	
trax.layers.core.Flatten(n_axes_to_keep=1)

	Returns a layer that combines one or more trailing axes of a tensor.

Flattening keeps all the values of the input tensor, but reshapes it by
collapsing one or more trailing axes into a single axis. For example, a
Flatten(n_axes_to_keep=2) layer would map a tensor with shape
(2, 3, 5, 7, 11) to the same values with shape (2, 3, 385).

	Parameters

	n_axes_to_keep – Number of leading axes to leave unchanged when reshaping;
collapse only the axes after these.

	
trax.layers.core.LogSoftmax(axis=-1)

	Returns a layer that applies log softmax along one tensor axis.

Note that the implementation actually computes x - LogSumExp(x),
which is mathematically equal to LogSoftmax(x).

LogSoftmax acts on a group of values and normalizes them to look like a set
of log probability values. (Probability values must be non-negative, and as
a set must sum to 1. A group of log probability values can be seen as the
natural logarithm function applied to a set of probability values.)

	Parameters

	axis – Axis along which values are grouped for computing log softmax.

	
trax.layers.core.LogSumExp(axis=-1)

	Returns a layer that computes log(sum(exp(x))) along one tensor axis.

	Parameters

	axis – Axis along which values are grouped for computing log-sum-exp.

	
trax.layers.core.Softmax(axis=-1)

	Returns a layer that applies softmax along one tensor axis.

Softmax acts on a group of values and normalizes them to look like a set
of probability values. (Probability values must be non-negative, and as a
set must sum to 1.)

	Parameters

	axis – Axis along which values are grouped for computing softmax.

	
trax.layers.core.ToFloat()

	Returns a layer that changes the dtype of a tensor to float32.

	
trax.layers.core.Mean(axis=-1, keepdims=False)

	Returns a layer that computes mean values using one tensor axis.

Mean uses one tensor axis to form groups of values and replaces each group
with the mean value of that group. The resulting values can either remain
in their own size 1 axis (keepdims=True), or that axis can be removed from
the overall tensor (default keepdims=False), lowering the rank of the
tensor by one.

	Parameters

	
	axis – Axis along which values are grouped for computing a mean.

	keepdims – If True, keep the resulting size 1 axis as a separate tensor
axis; else, remove that axis.

	
trax.layers.core.Min(axis=-1, keepdims=False)

	Returns a layer that applies min along one tensor axis.

	Parameters

	
	axis – Axis along which values are grouped for computing minimum.

	keepdims – If True, keep the resulting size 1 axis as a separate tensor
axis; else, remove that axis.

	
trax.layers.core.Max(axis=-1, keepdims=False)

	Returns a layer that applies max along one tensor axis.

	Parameters

	
	axis – Axis along which values are grouped for computing maximum.

	keepdims – If True, keep the resulting size 1 axis as a separate tensor
axis; else, remove that axis.

	
trax.layers.core.Sum(axis=None, keepdims=False)

	Returns a layer that computes sums using one tensor axis.

Sum uses one tensor axis to form groups of values and replaces each group
with the sum of that group. The resulting sum values can either remain in
their own size 1 axis (keepdims=True), or that axis can be removed from the
overall tensor (default keepdims=False), lowering the rank of the tensor by
one.

	Parameters

	
	axis – Axis along which values are grouped for computing a sum; if None,
compute sum over all elements in tensor.

	keepdims – If True, keep the resulting size 1 axis as a separate tensor
axis; else, remove that axis.

	
trax.layers.core.ThresholdToBinary(threshold=0.5)

	Returns a layer that thresholds inputs to yield outputs in {0, 1}.

	
trax.layers.core.ArgMax(axis=-1)

	Returns a layer that calculates argmax along the given axis.

	
trax.layers.core.Negate()

	Returns a layer that computes the element-wise negation of a tensor.

	
trax.layers.core.StopGradient()

	Returns an identity layer with a stop gradient.

	
trax.layers.core.one_hot(x, n_categories, dtype=<sphinx.ext.autodoc.importer._MockObject object>)

	Makes a one-hot array (n+1 dims) from an int-categorical array (n dims).

	
trax.layers.core.log_softmax(x, axis=-1)

	Transforms activation vectors to log-probability vectors.

Log probability vectors are derived by, in effect, applying softmax to raw
activation vectors and then applying log element-wise. The actual
implementation uses a mathematically valid simplification of this.

	Parameters

	
	x – An ndarray with activation vectors along the given axis.

	axis – Axis along which values are grouped for computing log softmax.

	Returns

	An ndarray containing log-probability vectors derived from the raw
activation vectors in x.

	
trax.layers.core.log_gaussian_pdf(x, mu, sigma)

	Returns log N(x | mu, sigma).

	Parameters

	
	x – <tbd>

	mu – <tbd>

	sigma – <tbd>

	
trax.layers.core.log_gaussian_diag_pdf(x, mu, diag_sigma)

	Returns log N(x | mu, eye(diag_sigma)).

	Parameters

	
	x – <tbd>

	mu – <tbd>

	diag_sigma – <tbd>

	
trax.layers.core.multigaussian_loss(preds, targets, ngauss=1)

	Returns a mixture of gaussians loss.

	Parameters

	
	preds – <tbd>

	targets – <tbd>

	ngauss – <tbd>

	
trax.layers.core.logsoftmax_sample(log_probs, temperature=1.0)

	Returns a sample from a log-softmax output, with temperature.

	Parameters

	
	log_probs – Logarithms of probabilities (often coming from LogSoftmax)

	temperature – For scaling before sampling (1.0 = default, 0.0 = pick argmax)

initializers

Trax initializers.

	
trax.layers.initializers.InitializerFromFile(path)

	Loads parameters from .npy file.

	
trax.layers.initializers.RandomNormalInitializer(stddev=0.01)

	Returns an initializer for random normal coefficients.

	
trax.layers.initializers.RandomUniformInitializer(lim=1.0)

	Returns an initializer for random uniform coefficients.

	
trax.layers.initializers.ScaledInitializer(out_dim, in_dim, scale, mode, distribution)

	Returns an initializer that adjusts its scale based on weight shapes.

	
trax.layers.initializers.GlorotNormalInitializer(out_dim=-1, in_dim=-2, scale=1.0)

	Returns an initializer for random Glorot-scaled coefficients.

	
trax.layers.initializers.GlorotUniformInitializer(out_dim=-1, in_dim=-2, scale=1.0)

	Returns an initializer for random uniform Glorot-scaled coefficients.

	
trax.layers.initializers.LeCunNormalInitializer(out_dim=-1, in_dim=-2, scale=1.0)

	Returns an initializer for random LeCun-scaled coefficients.

	
trax.layers.initializers.LeCunUniformInitializer(out_dim=-1, in_dim=-2, scale=1.0)

	Returns an initializer for random uniform LeCun-scaled coefficients.

	
trax.layers.initializers.KaimingNormalInitializer(out_dim=-1, in_dim=-2, param=0.0)

	Returns an initializer for random Kaiming-scaled coefficients.

	
trax.layers.initializers.KaimingUniformInitializer(out_dim=-1, in_dim=-2, param=0.0)

	Returns an initializer for random uniform Kaiming-scaled coefficients.

	
trax.layers.initializers.OrthogonalInitializer(stddev=1.0)

	Returns an orthogonal initializer.

	
trax.layers.initializers.AtariConvInit(kernel_shape, rng, dtype=<sphinx.ext.autodoc.importer._MockObject object>)

	The standard init for Conv laters and Atari.

metrics

Layers for computing loss functions and evaluation metrics.

A metric layer computes a scalar value from two or three ndarray inputs:

	model outputs: Batch of predicted values (typically vectors).

	targets: Batch of target values (e.g., categories or vectors).

	weights: Float values that allow for uneven weighting of batch items,
sequence positions, or vector components when computing an overall scalar
value for the batch.

Most metric computations take into account the items that make up a batch. For
each item in a batch, a raw metric value is computed by comparing (item-wise)
the model output to the target value. These item-wise values are then combined
into a single scalar for the batch by a function such as sum, average, or
weighted-average. For example:

	CategoryAccuracy: Treat model output as vectors whose components
correspond to the possible categories; measure a vector as correct (value
1) if its largest component is the target category, else as incorrect
(value 0). The accuracy for the batch is then the average across vectors of
these 1’s and 0’s.

	CategoryCrossEntropy: Treat model output and target values as the source
of two probability distributions; measure the cross-entropy of the model’s
predicted distribution relative to the (assumed true) target distribution.
The scalar value for the batch is then the average of the item-wise
cross-entropy values.

	
trax.layers.metrics.CategoryAccuracy()

	Returns a layer that computes category prediction accuracy.

The layer takes two inputs:

	A batch of activation vectors. The components in a given vector should
be mappable to a probability distribution in the following loose sense:
within a vector, a higher component value corresponds to a higher
probability, such that argmax within a vector (axis=-1) picks the
index (category) having the highest probablity.

	A batch of target categories; each target is an integer in
\(\{0, ..., N-1\}\).

The predicted category from each vector is the index of the highest-valued
vector component. The layer returns the accuracy of these predictions
averaged over the batch.

	
trax.layers.metrics.WeightedCategoryAccuracy()

	Returns a layer that computes a weighted category prediction accuracy.

The layer takes three inputs:

	A batch of activation vectors. The components in a given vector should
be mappable to a probability distribution in the following loose sense:
within a vector, a higher component value corresponds to a higher
probability, such that argmax within a vector (axis=-1) picks the
index (category) having the highest probablity.

	A batch of target categories; each target is an integer in
\(\{0, ..., N-1\}\), where \(N\) is the activation vector
depth/dimensionality.

	A batch of weights, which matches or can be broadcast to match the shape
of the target ndarray. This arg can give uneven weighting to different
items in the batch (depending, for instance, on the item’s target
category).

The predicted category from each vector is the index of the highest-valued
vector component. The layer returns a weighted average accuracy of these
predictions.

	
trax.layers.metrics.CategoryCrossEntropy(label_smoothing=None)

	Returns a layer that computes cross-entropy from activations and integers.

The layer takes two inputs:

	A batch of activation vectors. The components in a given vector should
be pre-softmax activations (mappable to a probability distribution via
softmax). For performance reasons, the softmax and cross-entropy
computations are combined inside the layer.

	A batch of target categories; each target is an integer in
\(\{0, ..., N-1\}\), where \(N\) is the activation vector
depth/dimensionality.

To compute cross-entropy per batch item, the layer derives probability
distributions:

	from model output (vectors): \(\ q = \text{softmax}(v)\)

	from target categories (integers): \(\ p = \text{one_hot}(n)\) or
\(p = (1-\varepsilon)\cdot\text{one_hot}(n) + \frac{\varepsilon}{N}\),
where \(\varepsilon\) is the label smoothing factor.

(The conversion of integer category targets to one-hot vectors amounts to
assigning all the probability mass to the target category.) Cross-entropy
per batch item is computed between the resulting distributions:

\[\text{cross_entropy} = - \sum_{i=0}^{N-1} p_i \log q_i\]

The layer returns the average of these cross-entropy values over all items in
the batch.

	Parameters

	label_smoothing – Creates soft targets if provided. Must be between 0 and 1.

	
trax.layers.metrics.WeightedCategoryCrossEntropy(label_smoothing=None)

	Returns a layer like CategoryCrossEntropy, with weights as third input.

The layer takes three inputs:

	A batch of activation vectors. The components in a given vector should
be pre-softmax activations (mappable to a probability distribution via
softmax). For performance reasons, the softmax and cross-entropy
computations are combined inside the layer.

	A batch of target categories; each target is an integer in
\(\{0, ..., N-1\}\), where \(N\) is the activation vector
depth/dimensionality.

	A batch of weights, which matches or can be broadcast to match the shape
of the target ndarray. This arg can give uneven weighting to different
items in the batch (depending, for instance, on the item’s target
category).

The layer returns the weighted average of these cross-entropy values over all
items in the batch.

	Parameters

	label_smoothing – Creates soft targets if provided. Must be between 0 and 1.

	
trax.layers.metrics.BinaryCrossEntropy()

	Returns a layer that computes cross-entropy for binary classification.

The layer takes two inputs:

	A batch of activation values; each batch item \(x\) is a float in
\((-\infty, \infty)\).

	A batch of binary targets; each target \(t\) is an integer in
\(\{0, 1\}\).

The layer maps each activation value into the range \((0, 1)\),
interpreted as the model-predicted probability that item’s category is 1:

\[q = \frac 1 {1 + e^{-x}} \ \ \text{[model-predicted probability]}\]

and computes cross-entropy (per batch item) by treating the target category
as having probability 1:

\[\begin{split}\text{cross_entropy} = \left\{ \begin{array}{cl}
 - \log q & \text{if}\ t = 1, \\
 - \log (1 - q) & \text{if}\ t = 0.
\end{array} \right.\end{split}\]

The layer returns the average of these cross-entropy values over all items in
the batch.

	
trax.layers.metrics.MaskedSequenceAccuracy()

	Returns a layer that computes sequence prediction accuracy with masking.

This layer type is intended for variable length sequences, especially text,
represented as a batch of fixed-length sequences via padding for unused
positions.

The layer takes three inputs:

	A batch of sequences of activation vectors. The components in a given
vector should be mappable to a probability distribution in the following
loose sense: within a vector, a higher component value corresponds to a
higher probability, such that argmax within a vector (axis=-1) picks
the index having the highest probablity. In text modeling, the index
represents a token id from a predetermined token vocabulary (or padding).

	A batch of target integer sequences, with values in
\(\{0, ..., N-1\}\), where \(N\) is the activation vector
depth/dimensionality. In text modeling, these sequences typically
represent token ids from a predetermined token vocabulary (or padding).

	A batch of weights/masks, which matches or can be broadcast to match the
shape of the target ndarray. This arg is used to give weight 0 to padding
positions, which masks those positions out of the calculation. Only the
zero/non-zero distinction matters; all non-zero values are treated alike
as signaling non-masked (i.e., valid/in-use) positions.

The predicted integer value for each sequence position is the index of the
highest-valued component of the position’s vector. A predicted integer
sequence is judged correct if it matches the target integer sequence in all
non-zero-weighted positions. The layer returns the accuracy of predicted
sequences averaged over the batch.

	
trax.layers.metrics.Accuracy(classifier=ArgMax)

	Returns a layer that computes mean category prediction accuracy.

DEPRECATED; use WeightedCategoryAccuracy instead.

	Parameters

	classifier – Layer that transforms activation vectors into category
predictions.

	
trax.layers.metrics.SequenceAccuracy(classifier=ArgMax)

	Returns a layer that computes mean sequence prediction accuracy.

DEPRECATED; use MaskedSequenceAccuracy instead.

	Parameters

	classifier – Layer that transforms activation vectors into category
predictions.

	
trax.layers.metrics.CrossEntropyLoss()

	Returns a layer that outputs multiclass prediction-target cross-entropy.

DEPRECATED; refactor to use WeightedCategoryCrossEntropy or
CategoryCrossEntropy instead.

(CrossEntropyLoss by itself does not compute cross-entropy. In older
code, this layer had to be preceded by LogSoftmax, and the two layers
together did the work of converting category information to probability
distributions and computing the cross-entropy between those distributions.
All this is now done by WeightedCategoryCrossEntropy.)

	
trax.layers.metrics.CrossEntropyLossWithLogSoftmax()

	Mean prediction-target cross-entropy for multiclass classification.

	
trax.layers.metrics.BinaryCrossEntropyLoss()

	Returns a layer that outputs binary prediction-target cross-entropy.

DEPRECATED; refactor to use BinaryCrossEntropy instead. (The newer
BinaryCrossEntropy does not use weights, so refactor accordingly. Unless
and until clear motivating use cases arise, the library will not include a
binary cross-entropy function with weights.)

	
trax.layers.metrics.L2Loss()

	Returns a layer that computes an L2-like loss for one batch.

The layer takes three inputs:

	Model output from one batch, an ndarray of float-valued elements.

	A batch of element-wise target values, which matches the shape of the
model output.

	A batch of weights, which matches the shape of the model output.

The layer returns a weighted average of element-wise squared error terms
\((y_i - t_i)^2\).

	
trax.layers.metrics.SmoothL1Loss()

	Returns a layer that computes a weighted, smoothed L1 loss for one batch.

The layer takes three inputs:

	Model output from one batch, an ndarray of float-valued elements.

	A batch of element-wise target values, which matches the shape of the
model output.

	A batch of weights, which matches the shape of the model output.

The layer computes a “smooth” L1 loss (a.k.a. Huber loss), for model output
float \(y_i\) and target float \(t_i\):

\[\begin{split}\text{output} = \left\{ \begin{array}{cl}
 \frac 1 2 (y_i - t_i)^2, & \text{if}\ |y_i - t_i| < 1, \\
 |y_i - t_i| - \frac 1 2, & \text{otherwise}.
\end{array} \right.\end{split}\]

The layer returns a weighted average of these element-wise values.

	
trax.layers.metrics.MacroAveragedFScore(beta=1.0, initial_category_index=0)

	Returns a layer that computes a macro-averaged F-score.

The macro-averaged F-score summarize how well the classifier’s k predictions
align with the observed/gold instances of k. It additionally cares about
all the classes equally regardless of their size.

	Parameters

	
	beta – a parameter that determines the weight of recall in the F-score.

	initial_category_index – an index of the initial category.

The layer takes two inputs:

	Model output from one batch, an ndarray of float-valued elements.

	A batch of element-wise target values, which matches the shape of the
model output.

The layer returns an macro-averaged F-score across all the classes.

	
trax.layers.metrics.WeightedFScore(beta=1.0, initial_category_index=0)

	Returns a layer that computes a weighted F-score.

The weighted F-score summarize how well the classifier’s k predictions
align with the observed/gold instances of k. It additionally
weights the summary by the number of observed/gold and predicted examples
in each class.

	Parameters

	
	beta – a parameter that determines the weight of recall in the F-score.

	initial_category_index – an index of the initial category.

The layer takes two inputs:

	Model output from one batch, an ndarray of float-valued elements.

	A batch of element-wise target values, which matches the shape of the
model output.

The layer returns a weighted F-score across all the classes.

	
trax.layers.metrics.WeightedSum()

	Returns a layer that computes a weighted sum of the given values.

	
trax.layers.metrics.CrossEntropySum()

	Sum of prediction-target cross entropies for multiclass classification.

	
trax.layers.metrics.BinaryCrossEntropySum()

	Sum of prediction-target cross entropies for binary classification.

normalization

Trax normalization layers.

	
class trax.layers.normalization.BatchNorm(axis=(0, 1, 2), epsilon=1e-05, center=True, scale=True, momentum=0.999, mode='train')

	Bases: trax.layers.base.Layer

Layer that performs batch normalization.

In training, batch normalization keeps smoothed cumulative statistics across
batches of input data and modifies each new batch so that its components are
normally distributed. In eval or inference, a BatchNorm instance uses its
stored mean and variance to approximately normalize each new batch of data.

See https://arxiv.org/abs/1502.03167 for original presentation and motivation
of batch normalization).

	
__init__(axis=(0, 1, 2), epsilon=1e-05, center=True, scale=True, momentum=0.999, mode='train')

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
forward(x)

	Computes batch normalization as part of a forward pass in the model.

	
init_weights_and_state(input_signature)

	Helper to initialize batch norm weights and state.

	
class trax.layers.normalization.LayerNorm(center=True, epsilon=1e-06)

	Bases: trax.layers.base.Layer

Layer normalization.

	
__init__(center=True, epsilon=1e-06)

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
forward(x)

	Computes this layer’s output as part of a forward pass through the model.

A layer subclass overrides this method to define how the layer computes
outputs from inputs. If the layer depends on weights, state, or randomness
as part of the computation, the needed information can be accessed as
properties of the layer object: self.weights, self.state, and
self.rng. (See numerous examples in trax.layers.core.)

	Parameters

	inputs – Zero or more input tensors, packaged as described in the Layer
class docstring.

	Returns

	Zero or more output tensors, packaged as described in the Layer class
docstring.

	
init_weights_and_state(input_signature)

	Initializes weights and state, to handle input with the given signature.

A layer subclass must override this method if the layer uses weights or
state. To initialize weights, set self.weights to desired (typically
random) values. To initialize state (uncommon), set self.state to desired
starting values.

	Parameters

	input_signature – A ShapeDtype instance (if this layer takes one input)
or a list/tuple of ShapeDtype instances.

	
class trax.layers.normalization.FilterResponseNorm(mode=None, learn_epsilon=False, init_epsilon=1e-06, init_learnt_epsilon=0.0001)

	Bases: trax.layers.base.Layer

Filter Response Normalization layer without Threshold Linear Unit.

c.f. https://arxiv.org/pdf/1911.09737.pdf

	
__init__(mode=None, learn_epsilon=False, init_epsilon=1e-06, init_learnt_epsilon=0.0001)

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
forward(inputs)

	Computes this layer’s output as part of a forward pass through the model.

A layer subclass overrides this method to define how the layer computes
outputs from inputs. If the layer depends on weights, state, or randomness
as part of the computation, the needed information can be accessed as
properties of the layer object: self.weights, self.state, and
self.rng. (See numerous examples in trax.layers.core.)

	Parameters

	inputs – Zero or more input tensors, packaged as described in the Layer
class docstring.

	Returns

	Zero or more output tensors, packaged as described in the Layer class
docstring.

	
init_weights_and_state(input_signature)

	Initializes weights and state, to handle input with the given signature.

A layer subclass must override this method if the layer uses weights or
state. To initialize weights, set self.weights to desired (typically
random) values. To initialize state (uncommon), set self.state to desired
starting values.

	Parameters

	input_signature – A ShapeDtype instance (if this layer takes one input)
or a list/tuple of ShapeDtype instances.

pooling

Trax pooling layers.

	
trax.layers.pooling.MaxPool(pool_size=(2, 2), strides=None, padding='VALID')

	Reduces each multi-dimensional window to the max of the window’s values.

Windows, as specified by pool_size and strides, involve all axes of an
n-dimensional array except the first and last: \((d_1, ..., d_{n-2})\)
from shape \((d_0, d_1, ..., d_{n-2}, d_{n-1})\).

	Parameters

	
	pool_size – Shape of window that gets reduced to a single vector value.
If the layer inputs are \(n\)-dimensional arrays, then pool_size
must be a tuple of length \(n-2\).

	strides – Offsets from the location of one window to the locations of
neighboring windows along each axis. If specified, must be a tuple of
the same length as pool_size. If None, then offsets of 1 along each
window axis, \((1, ..., 1)\), will be used.

	padding – ‘VALID’ or ‘SAME’. If ‘VALID’, no padding is done, and only
full windows get reduced; partial windows are discarded. If ‘SAME’,
padding is added at array edges as needed to avoid partial windows
but does not otherwise affect the selection of max values.

	Returns

	N-dimensional array in which each valid (or padded-valid) window position
in the input is reduced to / replaced by the max value from that window.
An output array has the same number of dimensions as its input, but has
fewer elements.

	
trax.layers.pooling.SumPool(pool_size=(2, 2), strides=None, padding='VALID')

	Reduces each multi-dimensional window to the sum of the window’s values.

Windows, as specified by pool_size and strides, involve all axes of an
n-dimensional array except the first and last: \((d_1, ..., d_{n-2})\)
from shape \((d_0, d_1, ..., d_{n-2}, d_{n-1})\).

	Parameters

	
	pool_size – Shape of window that gets reduced to a single vector value.
If the layer inputs are \(n\)-dimensional arrays, then pool_size
must be a tuple of length \(n-2\).

	strides – Offsets from the location of one window to the locations of
neighboring windows along each axis. If specified, must be a tuple of
the same length as pool_size. If None, then offsets of 1 along each
window axis, \((1, ..., 1)\), will be used.

	padding – ‘VALID’ or ‘SAME’. If ‘VALID’, no padding is done, and only
full windows get reduced; partial windows are discarded. If ‘SAME’,
padding is added at array edges as needed to avoid partial
windows but does not otherwise affect the computation of sums.

	Returns

	N-dimensional array in which each valid (or padded-valid) window position
in the input is reduced to / replaced by the sum of values in that window.
An output array has the same number of dimensions as its input, but has
fewer elements.

	
trax.layers.pooling.AvgPool(pool_size=(2, 2), strides=None, padding='VALID')

	Reduces each multi-dimensional window to the mean of the window’s values.

Windows, as specified by pool_size and strides, involve all axes of an
n-dimensional array except the first and last: \((d_1, ..., d_{n-2})\)
from shape \((d_0, d_1, ..., d_{n-2}, d_{n-1})\).

	Parameters

	
	pool_size – Shape of window that gets reduced to a single vector value.
If the layer inputs are \(n\)-dimensional arrays, then pool_size
must be a tuple of length \(n-2\).

	strides – Offsets from the location of one window to the locations of
neighboring windows along each axis. If specified, must be a tuple of
the same length as pool_size. If None, then offsets of 1 along each
window axis, \((1, ..., 1)\), will be used.

	padding – ‘VALID’ or ‘SAME’. If ‘VALID’, no padding is done, and only
full windows get reduced; partial windows are discarded. If ‘SAME’,
padding is added at array edges as needed but is not counted in the
computation of averages.

	Returns

	N-dimensional array in which each valid (or padded-valid) window position
in the input is reduced to / replaced by the mean of values in that window.
An output array has the same number of dimensions as its input, but has
fewer elements.

reversible

Layers that can run in reverse to compute inputs from outputs.

Reversible layers reduce the memory required for backpropagation-based
training, especially for deep networks. In a series of reversible layers,
input activations from a forward pass don’t need to be stored: they can be
reconstructed on the backward pass, layer by layer, from outputs to inputs.

See, e.g., [The Reversible Residual Network: Backpropagation Without Storing
Activations](https://arxiv.org/abs/1707.04585) and [Reformer: The Efficient
Transformer](https://arxiv.org/abs/2001.04451).

	
class trax.layers.reversible.ReversibleLayer(n_in=1, n_out=1, name=None, sublayers_to_print=None)

	Bases: trax.layers.base.Layer

Reversible Layer.

	
reverse(output, weights=(), state=(), new_state=(), rng=None)

	Reverse this layer: compute input given output.

	
reverse_and_grad(output, grad, weights=(), state=(), new_state=(), rng=None)

	Backward pass: computes the inverse of a layer and propagates gradients.

While you may choose to only implement reverse, some layers implement this
function directly as computation may be shared between reversing and
computing gradients.

	Parameters

	
	output – Output activations; can be a (possibly nested) tuple.

	grad – gradient signal (cotangent) computed based on subsequent layers.
The structure and shape must match the output.

	weights – layer weights

	state – start state

	new_state – updated state computed by the forward pass

	rng – Single-use random number generator (JAX PRNG key).

	Returns

	A tuple (x, (x_grad, weights_grad)), where x is the reconstructed input,
x_grad is the gradient signal for the input, and weights_grad is the
gradient signal for the weights.

	
has_backward

	Returns True if this layer provides its own custom backward pass code.

A layer subclass that provides custom backward pass code (for custom
gradients) must override this method to return True.

	
backward(inputs, output, grad, weights, state, new_state, rng)

	Custom backward pass to propagate gradients in a custom way.

	Parameters

	
	inputs – Input tensors; can be a (possibly nested) tuple.

	output – The result of running this layer on inputs.

	grad – Gradient signal computed based on subsequent layers; its structure
and shape must match output.

	weights – This layer’s weights.

	state – This layer’s state prior to the current forward pass.

	new_state – This layer’s state after the current forward pass.

	rng – Single-use random number generator (JAX PRNG key).

	Returns

	The custom gradient signal for the input. Note that we need to return
a gradient for each argument of forward, so it will usually be a tuple
of signals: the gradient for inputs and weights.

	
class trax.layers.reversible.ReversibleConcatenatePair

	Bases: trax.layers.reversible.ReversibleLayer

Maps (x, y) -> ([x, y], [x, y]); [x, y] is concatenation on last axis.

	
__init__()

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
forward(inputs)

	Computes this layer’s output as part of a forward pass through the model.

A layer subclass overrides this method to define how the layer computes
outputs from inputs. If the layer depends on weights, state, or randomness
as part of the computation, the needed information can be accessed as
properties of the layer object: self.weights, self.state, and
self.rng. (See numerous examples in trax.layers.core.)

	Parameters

	inputs – Zero or more input tensors, packaged as described in the Layer
class docstring.

	Returns

	Zero or more output tensors, packaged as described in the Layer class
docstring.

	
reverse(outputs, weights=(), state=(), new_state=(), rng=None)

	Reverse this layer: compute input given output.

	
class trax.layers.reversible.ReversibleSelect(indices, n_in=None, name=None)

	Bases: trax.layers.reversible.ReversibleLayer

Reversible version of the Select combinator.

	
__init__(indices, n_in=None, name=None)

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
forward(inputs)

	Computes this layer’s output as part of a forward pass through the model.

A layer subclass overrides this method to define how the layer computes
outputs from inputs. If the layer depends on weights, state, or randomness
as part of the computation, the needed information can be accessed as
properties of the layer object: self.weights, self.state, and
self.rng. (See numerous examples in trax.layers.core.)

	Parameters

	inputs – Zero or more input tensors, packaged as described in the Layer
class docstring.

	Returns

	Zero or more output tensors, packaged as described in the Layer class
docstring.

	
reverse(outputs, weights=(), state=(), new_state=(), rng=None)

	Reverse this layer: compute input given output.

	
trax.layers.reversible.ReversibleSwap()

	

	
class trax.layers.reversible.ReversibleReshape(shape1, shape2, n_in=1)

	Bases: trax.layers.reversible.ReversibleLayer

Reversible reshaping layer.

	
__init__(shape1, shape2, n_in=1)

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
forward(inputs)

	Computes this layer’s output as part of a forward pass through the model.

A layer subclass overrides this method to define how the layer computes
outputs from inputs. If the layer depends on weights, state, or randomness
as part of the computation, the needed information can be accessed as
properties of the layer object: self.weights, self.state, and
self.rng. (See numerous examples in trax.layers.core.)

	Parameters

	inputs – Zero or more input tensors, packaged as described in the Layer
class docstring.

	Returns

	Zero or more output tensors, packaged as described in the Layer class
docstring.

	
reverse(outputs, weights=(), state=(), new_state=(), rng=None)

	Reverse this layer: compute input given output.

	
class trax.layers.reversible.ReversiblePrintShape(n_in=1, msg='')

	Bases: trax.layers.reversible.ReversibleLayer

Reversible PrintShape for debugging reversible serial layers.

	
__init__(n_in=1, msg='')

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
forward(xs)

	Computes this layer’s output as part of a forward pass through the model.

A layer subclass overrides this method to define how the layer computes
outputs from inputs. If the layer depends on weights, state, or randomness
as part of the computation, the needed information can be accessed as
properties of the layer object: self.weights, self.state, and
self.rng. (See numerous examples in trax.layers.core.)

	Parameters

	inputs – Zero or more input tensors, packaged as described in the Layer
class docstring.

	Returns

	Zero or more output tensors, packaged as described in the Layer class
docstring.

	
reverse(outputs, weights=(), state=(), new_state=(), rng=None)

	Reverse this layer: compute input given output.

	
class trax.layers.reversible.ReversibleSerial(*layers)

	Bases: trax.layers.reversible.ReversibleLayer, trax.layers.combinators.Serial

A reversible version of tl.Serial (requires reversible sub-layers).

	
__init__(*layers)

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
reverse(output, weights=(), state=(), new_state=(), rng=None)

	Reverse this layer: compute input given output.

	
reverse_and_grad(output, grad, weights=(), state=(), new_state=(), rng=None)

	Backward pass: computes the inverse of a layer and propagates gradients.

While you may choose to only implement reverse, some layers implement this
function directly as computation may be shared between reversing and
computing gradients.

	Parameters

	
	output – Output activations; can be a (possibly nested) tuple.

	grad – gradient signal (cotangent) computed based on subsequent layers.
The structure and shape must match the output.

	weights – layer weights

	state – start state

	new_state – updated state computed by the forward pass

	rng – Single-use random number generator (JAX PRNG key).

	Returns

	A tuple (x, (x_grad, weights_grad)), where x is the reconstructed input,
x_grad is the gradient signal for the input, and weights_grad is the
gradient signal for the weights.

	
class trax.layers.reversible.ReversibleHalfResidual(*residual_layers, attention_layer=None, name=None)

	Bases: trax.layers.reversible.ReversibleLayer

Half of a RevNet-style residual that optionally performs attention.

When attention_layer is None, this layer has the signature

[accumulator, *context] -> [accumulator + f(context), *context]

The attention_layer must be an instance of EfficientAttentionBase or one of
its subclasses (see efficient_attention.py), or None.

Attention is special-cased for the following two reasons:

	LSH attention needs to save bucket assignments from the forward pass to the
backward pass, for training stability. This requires special-casing it.

	We can call attention_layer.forward_and_or_backward to compute its output
(needed for inverting a reversible residual layer) while simultaneously
performing the backward pass. Sharing computation between these two
operations improves training speed.

	
__init__(*residual_layers, attention_layer=None, name=None)

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
forward(xs)

	Computes this layer’s output as part of a forward pass through the model.

A layer subclass overrides this method to define how the layer computes
outputs from inputs. If the layer depends on weights, state, or randomness
as part of the computation, the needed information can be accessed as
properties of the layer object: self.weights, self.state, and
self.rng. (See numerous examples in trax.layers.core.)

	Parameters

	inputs – Zero or more input tensors, packaged as described in the Layer
class docstring.

	Returns

	Zero or more output tensors, packaged as described in the Layer class
docstring.

	
reverse(output, weights=(), state=(), new_state=(), rng=None)

	Reverse this layer: compute input given output.

	
reverse_and_grad(output, ct, weights=(), state=(), new_state=(), rng=None)

	Backward pass: computes the inverse of a layer and propagates gradients.

While you may choose to only implement reverse, some layers implement this
function directly as computation may be shared between reversing and
computing gradients.

	Parameters

	
	output – Output activations; can be a (possibly nested) tuple.

	grad – gradient signal (cotangent) computed based on subsequent layers.
The structure and shape must match the output.

	weights – layer weights

	state – start state

	new_state – updated state computed by the forward pass

	rng – Single-use random number generator (JAX PRNG key).

	Returns

	A tuple (x, (x_grad, weights_grad)), where x is the reconstructed input,
x_grad is the gradient signal for the input, and weights_grad is the
gradient signal for the weights.

	
init_weights_and_state(input_signature)

	Initializes weights and state, to handle input with the given signature.

A layer subclass must override this method if the layer uses weights or
state. To initialize weights, set self.weights to desired (typically
random) values. To initialize state (uncommon), set self.state to desired
starting values.

	Parameters

	input_signature – A ShapeDtype instance (if this layer takes one input)
or a list/tuple of ShapeDtype instances.

rnn

Implementations of common recurrent neural network cells (RNNs).

	
class trax.layers.rnn.LSTMCell(n_units, forget_bias=1.0, kernel_initializer=<function ScaledInitializer.<locals>.Init>, bias_initializer=<function RandomNormalInitializer.<locals>.<lambda>>)

	Bases: trax.layers.base.Layer

LSTM Cell.

For a nice overview of the motivation and (i, o, f) gates, see this tutorial:
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

See this paper for a description and detailed study of all gate types:
https://arxiv.org/pdf/1503.04069.pdf

	
__init__(n_units, forget_bias=1.0, kernel_initializer=<function ScaledInitializer.<locals>.Init>, bias_initializer=<function RandomNormalInitializer.<locals>.<lambda>>)

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
forward(inputs)

	Computes this layer’s output as part of a forward pass through the model.

A layer subclass overrides this method to define how the layer computes
outputs from inputs. If the layer depends on weights, state, or randomness
as part of the computation, the needed information can be accessed as
properties of the layer object: self.weights, self.state, and
self.rng. (See numerous examples in trax.layers.core.)

	Parameters

	inputs – Zero or more input tensors, packaged as described in the Layer
class docstring.

	Returns

	Zero or more output tensors, packaged as described in the Layer class
docstring.

	
init_weights_and_state(input_signature)

	Initializes weights and state, to handle input with the given signature.

A layer subclass must override this method if the layer uses weights or
state. To initialize weights, set self.weights to desired (typically
random) values. To initialize state (uncommon), set self.state to desired
starting values.

	Parameters

	input_signature – A ShapeDtype instance (if this layer takes one input)
or a list/tuple of ShapeDtype instances.

	
trax.layers.rnn.MakeZeroState(depth_multiplier=1)

	Makes zeros of shape like x but removing the length (axis 1).

	
trax.layers.rnn.LSTM(n_units, mode='train')

	LSTM running on axis 1.

	
class trax.layers.rnn.GRUCell(n_units, forget_bias=0.0, kernel_initializer=<function RandomUniformInitializer.<locals>.<lambda>>, bias_initializer=<function RandomNormalInitializer.<locals>.<lambda>>)

	Bases: trax.layers.base.Layer

Builds a traditional GRU cell with dense internal transformations.

Gated Recurrent Unit paper: https://arxiv.org/abs/1412.3555

	
__init__(n_units, forget_bias=0.0, kernel_initializer=<function RandomUniformInitializer.<locals>.<lambda>>, bias_initializer=<function RandomNormalInitializer.<locals>.<lambda>>)

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
forward(inputs)

	Computes this layer’s output as part of a forward pass through the model.

A layer subclass overrides this method to define how the layer computes
outputs from inputs. If the layer depends on weights, state, or randomness
as part of the computation, the needed information can be accessed as
properties of the layer object: self.weights, self.state, and
self.rng. (See numerous examples in trax.layers.core.)

	Parameters

	inputs – Zero or more input tensors, packaged as described in the Layer
class docstring.

	Returns

	Zero or more output tensors, packaged as described in the Layer class
docstring.

	
init_weights_and_state(input_signature)

	Initializes weights and state, to handle input with the given signature.

A layer subclass must override this method if the layer uses weights or
state. To initialize weights, set self.weights to desired (typically
random) values. To initialize state (uncommon), set self.state to desired
starting values.

	Parameters

	input_signature – A ShapeDtype instance (if this layer takes one input)
or a list/tuple of ShapeDtype instances.

	
trax.layers.rnn.GRU(n_units, mode='train')

	GRU running on axis 1.

	
trax.layers.rnn.ConvGRUCell(n_units, kernel_size=(3, 3))

	Builds a convolutional GRU.

Paper: https://arxiv.org/abs/1511.06432.

	Parameters

	
	n_units – Number of hidden units

	kernel_size – Kernel size for convolution

	Returns

	A Stax model representing a GRU cell with convolution transforms.

	
trax.layers.rnn.GeneralGRUCell(candidate_transform, memory_transform_fn=None, gate_nonlinearity=<function Sigmoid>, candidate_nonlinearity=<function Tanh>, dropout_rate_c=0.1, sigmoid_bias=0.5)

	Parametrized Gated Recurrent Unit (GRU) cell construction.

GRU update equations for update gate, reset gate, candidate memory, and new
state:

\[\begin{split}u_t &= \sigma(U' \times s_{t-1} + B') \\
r_t &= \sigma(U'' \times s_{t-1} + B'') \\
c_t &= \tanh(U \times (r_t \odot s_{t-1}) + B) \\
s_t &= u_t \odot s_{t-1} + (1 - u_t) \odot c_t\end{split}\]

See combinators.Gate for details on the gating function.

	Parameters

	
	candidate_transform – Transform to apply inside the Candidate branch. Applied
before nonlinearities.

	memory_transform_fn – Optional transformation on the memory before gating.

	gate_nonlinearity – Function to use as gate activation; allows trying
alternatives to Sigmoid, such as HardSigmoid.

	candidate_nonlinearity – Nonlinearity to apply after candidate branch; allows
trying alternatives to traditional Tanh, such as HardTanh.

	dropout_rate_c – Amount of dropout on the transform (c) gate. Dropout works
best in a GRU when applied exclusively to this branch.

	sigmoid_bias – Constant to add before sigmoid gates. Generally want to start
off with a positive bias.

	Returns

	A model representing a GRU cell with specified transforms.

	
trax.layers.rnn.InnerSRUCell()

	The inner (non-parallel) computation of an SRU.

	
trax.layers.rnn.SRU(n_units, activation=None, mode='train')

	SRU (Simple Recurrent Unit) layer as in https://arxiv.org/abs/1709.02755.

As defined in the paper:

\[\begin{split}y_t &= W x_t + B \quad \hbox{(include B optionally)} \\
f_t &= \sigma(Wf x_t + bf) \\
r_t &= \sigma(Wr x_t + br) \\
c_t &= f_t \times c_{t-1} + (1 - f_t) \times y_t \\
h_t &= r_t \times \hbox{activation}(c_t) + (1 - r_t) \times x_t\end{split}\]

We assume the input is of shape [batch, length, depth] and recurrence
happens on the length dimension. This returns a single layer. It’s best
to use at least 2, they say in the paper, except inside a Transformer.

	Parameters

	
	n_units – output depth of the SRU layer.

	activation – Optional activation function.

	mode – if ‘predict’ then we save the previous state for one-by-one inference

	Returns

	The SRU layer.

research.efficient_attention

Attention Layers optimized for efficiency (second-pass implementation).

The approach taken in the first round of efficient attention implementations
revealed several limitations, which this code attempts to address:

	Simultaneously instantiating queries, keys, and values for all heads can
exceed the memory budget. Transformers are typically tuned such that
n_heads * d_attention_key == d_model. Since attention involves queries, keys,
AND values, the memory to store them can be ~3x the memory needed to store
the input activations. Once the O(n^2) dot-product bottleneck is removed
– as is the case in all of our efficient attention implementations – this
becomes the next critical bottleneck for scaling up Transformer models.

	Attention masking is implemented by associating an integer (typically, the
sequence position) with each query and key vector, and defining a function
to compute attention masks from this information. The standard attention API
(attention.py) is unscalable because it instantiates O(n^2)-size attention
masks, and the previous efficient implementations (efficient_attention.py)
only supported causal masking.

	
trax.layers.research.efficient_attention.length_normalized(x, epsilon=1e-06)

	

	
trax.layers.research.efficient_attention.hash_vecs(vecs, n_buckets_in, n_hashes, rng)

	Hash vectors into buckets.

	Parameters

	
	vecs – vectors to hash, a tensor of shape [batch_size, depth]

	n_buckets_in – an int or a list of ints, number of hash buckets;
if it is a list, we do hierarchical hashing as specified by the list

	n_hashes – number of hashes

	rng – random generator to use for hashing

	Returns

	A pair (buckets, n_buckets) where buckets is a tensor of shape
[n_hashes, batch_size] of integers – the hash bucket IDs, and
n_buckets is an int, the total number of hash buckets, equal to
the product of all items in n_buckets_in.

	
trax.layers.research.efficient_attention.look_adjacent(x, n_chunks_before, n_chunks_after)

	Used to implement attention between consecutive chunks.

	Parameters

	
	x – array of shape [n_chunks, chunk_len, …]

	n_chunks_before – Number of previous chunks to attend to.

	n_chunks_after – Number of subsequent chunks to attend to.

	Returns

	array of shape [n_chunks, N * chunk_len, …], where
N = (1 + n_chunks_before + n_chunks_after).

	
trax.layers.research.efficient_attention.mask_self_attention(dots, q_info, kv_info, causal=True, exclude_self=True, masked=False)

	Performs masking for self-attention.

	
trax.layers.research.efficient_attention.attend(q, k=None, v=None, q_chunk_len=None, kv_chunk_len=None, n_chunks_before=0, n_chunks_after=0, mask_fn=None, q_info=None, kv_info=None, dropout=0.0, rng=None)

	Dot-product attention, with optional chunking and/or masking.

	Parameters

	
	q – Query vectors, shape [q_len, d_qk]

	k – Key vectors, shape [kv_len, d_qk]; or None

	v – Value vectors, shape [kv_len, d_v]

	q_chunk_len – Set to non-zero to enable chunking for query vectors

	kv_chunk_len – Set to non-zero to enable chunking for key/value vectors

	n_chunks_before – Number of adjacent previous chunks to attend to

	n_chunks_after – Number of adjacent subsequent chunks to attend to

	mask_fn – TODO(kitaev) doc

	q_info – Query-associated metadata for masking

	kv_info – Key-associated metadata for masking

	dropout – Dropout rate

	rng – RNG for dropout

	Returns

	A tuple (output, dots_logsumexp). The output has shape [q_len, d_v], and
dots_logsumexp has shape [q_len]. The logsumexp of the attention
probabilities is useful for combining multiple rounds of attention (as in
LSH attention).

	
trax.layers.research.efficient_attention.apply_broadcasted_dropout(vecs, dropout_rate, rng)

	Apply dropout, broadcasted across all but the last dimension of vecs.

	
trax.layers.research.efficient_attention.permute_via_gather(val, permutation, inverse_permutation, axis=0)

	Permutation helper for LSH attention.

	
trax.layers.research.efficient_attention.permute_via_sort(val, keys, inverse_keys, axis=0)

	Permutation helper for LSH attention.

	
class trax.layers.research.efficient_attention.EfficientAttentionBase(n_heads, n_in=1, n_parallel_heads=None, incremental=False, predict_mem_len=None, predict_drop_len=None, use_python_loop=False, use_reference_code=False)

	Bases: trax.layers.base.Layer

Base class for efficient attention.

This is a base class that implements memory-efficient batching for both the
forward and backward passes. Subclasses should override
create_weights_unbatched, create_state_unbatched, forward_unbatched, and
optionally incremental_forward_unbatched to define the actual attention
mechanism.

	
__init__(n_heads, n_in=1, n_parallel_heads=None, incremental=False, predict_mem_len=None, predict_drop_len=None, use_python_loop=False, use_reference_code=False)

	Constructs an EfficientAttentionBase instance.

	Parameters

	
	n_heads – Number of attention heads.

	n_in – Number of inputs to the layer (default 1).

	n_parallel_heads – Number of attention heads to compute in parallel.

	If n_parallel_heads is None (default), the entire layer is
computed with maximum parallelism. This mode is the fastest, but
also uses the most memory. Start with this mode, but switch to one
of the others if memory runs out.

	If n_parallel_heads is 1, attention is computed one head at a
time, and one example at a time. This mode uses the least memory
but is not as fast as batched attention. Use this mode when working
with very long sequences, such that any amount of parallelism won’t
fit in memory.

	If n_parallel_heads is a multiple of n_heads, attention is
computed for sub-batches of (n_parallel_heads // n_heads)
examples at a time.

	If 1 < n_parallel_heads < n_heads, attention is computed for
several heads at a time, but only within a single example. It must
be the case that n_heads is a multiple of n_parallel_heads. Use
this mode for long sequences, to strike a balance between
parallelism and memory usage.

	incremental – If True, enable fast inference for self-attention types.
Note that this flag should not be set when doing encoder-decoder
attention, but only when doing self-attention.

	predict_mem_len – Number of input positions to remember in a cache
when doing fast inference. Whenever the cache fills up, some input
elements will be forgotten.

	predict_drop_len – Number of input elements to drop once the fast
inference input cache fills up.

	use_python_loop – Set to True to use a Python loop when iterating over
sub-batches of examples/heads (as opposed to a JAX/XLA loop).
This option will increase compilation time and jitted code size,
potentially drastically. Using it is not recommended except for
testing/debugging. In particular, note that enabling this option on
TPU can decrease the maximum model size that will fit in memory.

	use_reference_code – Set to True to fall back to the reference
implementation of batched attention. This option will increase
compilation time and jitted code size, potentially drastically. Using
it is not recommended except for testing/debugging.

	
init_weights_and_state(input_signature)

	Initializes weights and state, to handle input with the given signature.

A layer subclass must override this method if the layer uses weights or
state. To initialize weights, set self.weights to desired (typically
random) values. To initialize state (uncommon), set self.state to desired
starting values.

	Parameters

	input_signature – A ShapeDtype instance (if this layer takes one input)
or a list/tuple of ShapeDtype instances.

	
create_weights_unbatched(input_signature, rng)

	

	
create_state_unbatched(input_signature, rng)

	

	
forward_unbatched(*inputs, weights, state)

	Perform attention for a single batch element and head.

Subclasses should override this method.

	Parameters

	
	*inputs – Inputs for a single example (subclasses may use different inputs)

	weights – Weights for a single attention head

	state – State for a single example & attention head pair.

	Returns

	A tuple (output, new_state) – output and new state for a single example
and attention head.

	
forward(inputs)

	Computes this layer’s output as part of a forward pass through the model.

	Parameters

	inputs – Layer inputs (subclasses may use different inputs)

	Returns

	A tuple (output, new_state).

	
has_backward

	Returns True if this layer provides its own custom backward pass code.

A layer subclass that provides custom backward pass code (for custom
gradients) must override this method to return True.

	
backward(inputs, output, grad, weights, state, new_state, rng=None, **kwargs)

	Custom backward pass, for efficiency (see forward_and_or_backward).

	
forward_and_or_backward(inputs, weights, state, rng, output_grad=None, compute_output=True, update_state=True)

	Performs batched forward and/or backward passes.

See forward for a reference implementation of what this layer does. The
reference implementation is not very efficient, however, and this method
provides a more performant version.

	Parameters

	
	inputs – inputs to the attention layer

	weights – weights for the attention layer

	state – state of the attention layer

	rng – PRNG key for the layer (shared across all examples and heads)

	output_grad – gradient of the loss wrt the output of the layer, or None.
This function performs the backward pass iff output_grad is not
None.

	compute_output – bool: whether to return the output of the forward pass
(for example, a pure backwards pass does not need to return the
output).

	update_state – bool: whether to return an updated layer state.

	Returns

	A tuple (output, new_state, inputs_grad, weights_grad).

	output is not None iff compute_output is True

	new_state is not None iff update_state is True

	inputs_grad & weights_grad are not None iff output_grad is not None

	
class trax.layers.research.efficient_attention.SelfAttention(n_heads=2, d_qk=64, d_v=64, share_qk=False, causal=False, masked=False, chunk_len=None, n_chunks_before=0, n_chunks_after=0, bias=False, mode='train', predict_mem_len=None, predict_drop_len=None, attention_dropout=0.0, output_dropout=0.0, n_parallel_heads=None, use_python_loop=False, use_reference_code=False)

	Bases: trax.layers.base.Layer

Memory-efficient self-attention (second attempt).

	
__init__(n_heads=2, d_qk=64, d_v=64, share_qk=False, causal=False, masked=False, chunk_len=None, n_chunks_before=0, n_chunks_after=0, bias=False, mode='train', predict_mem_len=None, predict_drop_len=None, attention_dropout=0.0, output_dropout=0.0, n_parallel_heads=None, use_python_loop=False, use_reference_code=False)

	Construct a self-attention layer.

	Parameters

	
	n_heads – int: Number of attention heads

	d_qk – int: Depth of query ond key vectors

	d_v – int: Depth of value vectors

	share_qk – bool: Set to True to share query and key projection weights

	causal – bool: Set to True to mask out attention to future items

	masked – bool: Set to True to accept an additional mask argument, that
allows masking out attention to padding tokens.

	chunk_len (optional) – Number of tokens per chunk. Setting this option will
enable chunked attention.

	n_chunks_before – Number of previous chunks to attend to, when using
chunked attention.

	n_chunks_after – Number of subsequent chunks to attend to, when using
chunked attention. Don’t use this option for causal attention, because
attention to future tokens will be masked out anyway. However, note that
cross-chunk attention “wraps around” in both directions, so this option
is never a strict no-op.

	bias – bool: Set to True to add bias vectors when computing query/key/value

	mode – ‘train’, ‘eval’, or ‘predict’

	predict_mem_len – int: Number of input positions to remember in a cache
when doing fast inference. Whenever the cache fills up, some input
elements will be forgotten. When chunking is enabled, the default is to
store chunk_len * (1 + n_chunks_before) elements.

	predict_drop_len – int: Number of input elements to drop once the fast
inference input cache fills up. When chunking is enabled, the default is
to drop exactly chunk_len elements.

	attention_dropout – Dropout probability for attention mask.

	output_dropout – Dropout probability for the layer output.

	n_parallel_heads – Number of attention heads to compute in parallel.

	If n_parallel_heads is None (default), the entire layer is
computed with maximum parallelism. This mode is the fastest, but
also uses the most memory. Start with this mode, but switch to one
of the others if memory runs out.

	If n_parallel_heads is 1, attention is computed one head at a
time, and one example at a time. This mode uses the least memory
but is not as fast as batched attention. Use this mode when working
with very long sequences, such that any amount of parallelism won’t
fit in memory.

	If n_parallel_heads is a multiple of n_heads, attention is
computed for sub-batches of (n_parallel_heads // n_heads)
examples at a time.

	If 1 < n_parallel_heads < n_heads, attention is computed for
several heads at a time, but only within a single example. It must
be the case that n_heads is a multiple of n_parallel_heads. Use
this mode for long sequences, to strike a balance between
parallelism and memory usage.

	use_python_loop – Set to True to use a Python loop when iterating over
sub-batches of examples/heads (as opposed to a JAX/XLA loop).
This option will increase compilation time and jitted code size,
potentially drastically. Using it is not recommended except for
testing/debugging. In particular, note that enabling this option on
TPU can decrease the maximum model size that will fit in memory.

	use_reference_code – Set to True to fall back to the reference
implementation of batched attention. This option will increase
compilation time and jitted code size, potentially drastically. Using
it is not recommended except for testing/debugging.

	
init_weights_and_state(input_signature)

	Initializes weights and state, to handle input with the given signature.

A layer subclass must override this method if the layer uses weights or
state. To initialize weights, set self.weights to desired (typically
random) values. To initialize state (uncommon), set self.state to desired
starting values.

	Parameters

	input_signature – A ShapeDtype instance (if this layer takes one input)
or a list/tuple of ShapeDtype instances.

	
create_weights_unbatched(input_signature, rng)

	

	
create_state_unbatched(input_signature, rng)

	

	
forward_unbatched(x, mask=None, *, weights, state, rng, update_state)

	Perform attention for a single batch element and head.

	Parameters

	
	x – Inputs for a single example (subclasses may use different inputs)

	mask – Mask for the inputs.

	weights – Weights for a single attention head

	state – State for a single example & attention head pair.

	rng – PRNG key for the layer (shared across all examples and heads)

	update_state – bool: whether to return an updated layer state.

	Returns

	A tuple (output, new_state) – output and new state for a single example
and attention head.

	
forward(inputs)

	Computes this layer’s output as part of a forward pass through the model.

	Parameters

	inputs – Layer inputs (subclasses may use different inputs)

	Returns

	A tuple (output, new_state).

	
has_backward

	Returns True if this layer provides its own custom backward pass code.

A layer subclass that provides custom backward pass code (for custom
gradients) must override this method to return True.

	
backward(inputs, output, grad, weights, state, new_state, rng=None, **kwargs)

	Custom backward pass, for efficiency (see forward_and_or_backward).

	
forward_and_or_backward(inputs, weights, state, rng, output_grad=None, compute_output=True, update_state=True)

	Performs batched forward and/or backward passes.

See forward for a reference implementation of what this layer does. The
reference implementation is not very efficient, however, and this method
provides a more performant version.

	Parameters

	
	inputs – inputs to the attention layer

	weights – weights for the attention layer

	state – state of the attention layer

	rng – PRNG key for the layer (shared across all examples and heads)

	output_grad – gradient of the loss wrt the output of the layer, or None.
This function performs the backward pass iff output_grad is not
None.

	compute_output – bool: whether to return the output of the forward pass
(for example, a pure backwards pass does not need to return the
output).

	update_state – bool: whether to return an updated layer state.

	Returns

	A tuple (output, new_state, inputs_grad, weights_grad).

	output is not None iff compute_output is True

	new_state is not None iff update_state is True

	inputs_grad & weights_grad are not None iff output_grad is not None

	
class trax.layers.research.efficient_attention.LSHSelfAttention(n_heads=2, d_qk=64, d_v=64, share_qk='unused', causal=False, masked=False, chunk_len=128, n_chunks_before=1, n_chunks_after=0, n_hashes=1, n_buckets=None, mode='train', predict_mem_len=2048, predict_drop_len=256, attention_dropout=0.0, output_dropout=0.0, max_length_for_buckets=None, bias=False, n_parallel_heads=1, use_python_loop=False, use_reference_code=False)

	Bases: trax.layers.base.Layer

LSH self-attention (second implementation).

	
__init__(n_heads=2, d_qk=64, d_v=64, share_qk='unused', causal=False, masked=False, chunk_len=128, n_chunks_before=1, n_chunks_after=0, n_hashes=1, n_buckets=None, mode='train', predict_mem_len=2048, predict_drop_len=256, attention_dropout=0.0, output_dropout=0.0, max_length_for_buckets=None, bias=False, n_parallel_heads=1, use_python_loop=False, use_reference_code=False)

	Construct an LSH self-attention layer.

	
init_weights_and_state(input_signature)

	Initializes weights and state, to handle input with the given signature.

A layer subclass must override this method if the layer uses weights or
state. To initialize weights, set self.weights to desired (typically
random) values. To initialize state (uncommon), set self.state to desired
starting values.

	Parameters

	input_signature – A ShapeDtype instance (if this layer takes one input)
or a list/tuple of ShapeDtype instances.

	
create_weights_unbatched(input_signature, rng)

	

	
create_state_unbatched(input_signature, rng)

	

	
hash_vectors(vecs, rng, mask=None)

	

	
forward_unbatched(x, mask=None, *, weights, state, rng, update_state)

	

	
forward(inputs)

	Computes this layer’s output as part of a forward pass through the model.

	Parameters

	inputs – Layer inputs (subclasses may use different inputs)

	Returns

	A tuple (output, new_state).

	
has_backward

	Returns True if this layer provides its own custom backward pass code.

A layer subclass that provides custom backward pass code (for custom
gradients) must override this method to return True.

	
backward(inputs, output, grad, weights, state, new_state, rng=None, **kwargs)

	Custom backward pass, for efficiency (see forward_and_or_backward).

	
forward_and_or_backward(inputs, weights, state, rng, output_grad=None, compute_output=True, update_state=True)

	Performs batched forward and/or backward passes.

See forward for a reference implementation of what this layer does. The
reference implementation is not very efficient, however, and this method
provides a more performant version.

	Parameters

	
	inputs – inputs to the attention layer

	weights – weights for the attention layer

	state – state of the attention layer

	rng – PRNG key for the layer (shared across all examples and heads)

	output_grad – gradient of the loss wrt the output of the layer, or None.
This function performs the backward pass iff output_grad is not
None.

	compute_output – bool: whether to return the output of the forward pass
(for example, a pure backwards pass does not need to return the
output).

	update_state – bool: whether to return an updated layer state.

	Returns

	A tuple (output, new_state, inputs_grad, weights_grad).

	output is not None iff compute_output is True

	new_state is not None iff update_state is True

	inputs_grad & weights_grad are not None iff output_grad is not None

	
class trax.layers.research.efficient_attention.PureLSHSelfAttention(n_heads=2, d_qk=64, d_v=64, share_qk='unused', causal=False, masked=False, chunk_len=128, n_chunks_before=1, n_chunks_after=0, n_hashes=1, n_buckets=None, mode='train', predict_mem_len=2048, predict_drop_len=256, attention_dropout=0.0, output_dropout=0.0, max_length_for_buckets=None, bias=False, n_parallel_heads=1, use_python_loop=False, use_reference_code=False)

	Bases: trax.layers.base.Layer

LSH self-attention without weights.

	
__init__(n_heads=2, d_qk=64, d_v=64, share_qk='unused', causal=False, masked=False, chunk_len=128, n_chunks_before=1, n_chunks_after=0, n_hashes=1, n_buckets=None, mode='train', predict_mem_len=2048, predict_drop_len=256, attention_dropout=0.0, output_dropout=0.0, max_length_for_buckets=None, bias=False, n_parallel_heads=1, use_python_loop=False, use_reference_code=False)

	Construct an LSH self-attention layer.

	
init_weights_and_state(input_signature)

	Initializes weights and state, to handle input with the given signature.

A layer subclass must override this method if the layer uses weights or
state. To initialize weights, set self.weights to desired (typically
random) values. To initialize state (uncommon), set self.state to desired
starting values.

	Parameters

	input_signature – A ShapeDtype instance (if this layer takes one input)
or a list/tuple of ShapeDtype instances.

	
create_state_unbatched(input_signature, rng)

	

	
hash_vectors(vecs, rng, mask=None)

	

	
forward_unbatched(qk, v, mask=None, *, state, rng, update_state)

	

	
forward(inputs)

	Computes this layer’s output as part of a forward pass through the model.

	Parameters

	inputs – Layer inputs (subclasses may use different inputs)

	Returns

	A tuple (output, new_state).

	
has_backward

	Returns True if this layer provides its own custom backward pass code.

A layer subclass that provides custom backward pass code (for custom
gradients) must override this method to return True.

	
backward(inputs, output, grad, weights, state, new_state, rng=None, **kwargs)

	Custom backward pass, for efficiency (see forward_and_or_backward).

	
forward_and_or_backward(inputs, state, rng, output_grad=None, compute_output=True, update_state=True)

	Performs batched forward and/or backward passes.

See forward for a reference implementation of what this layer does. The
reference implementation is not very efficient, however, and this method
provides a more performant version.

	Parameters

	
	inputs – inputs to the attention layer tuple (qk, v, mask)

	state – state of the attention layer

	rng – PRNG key for the layer (shared across all examples and heads)

	output_grad – gradient of the loss wrt the output of the layer, or None.
This function performs the backward pass iff output_grad is not
None.

	compute_output – bool: whether to return the output of the forward pass
(for example, a pure backwards pass does not need to return the
output).

	update_state – bool: whether to return an updated layer state.

	Returns

	A tuple (output, new_state, inputs_grad, weights_grad).

	output is not None iff compute_output is True

	new_state is not None iff update_state is True

	inputs_grad & weights_grad are not None iff output_grad is not None

	
class trax.layers.research.efficient_attention.MixedLSHSelfAttention(n_heads=1, d_qk=64, d_v=64, causal=False, masked=False, std_length=None, mode='train', output_dropout=0.0, attention_dropout=0.0, force_no_dropout=False, **pure_lsh_implementation_kwargs)

	Bases: trax.layers.base.Layer

LSH attention mixed with standard attention used until std_length.

	
__init__(n_heads=1, d_qk=64, d_v=64, causal=False, masked=False, std_length=None, mode='train', output_dropout=0.0, attention_dropout=0.0, force_no_dropout=False, **pure_lsh_implementation_kwargs)

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
init_weights_and_state(input_signature)

	Initializes weights and state for inputs with the given signature.

	
forward(xs)

	Executes this layer as part of a forward pass through the model.

	
forward_and_or_backward(inputs, state, rng, output_grad=None, compute_output=True, update_state=True)

	Performs batched forward and/or backward passes.

	
class trax.layers.research.efficient_attention.PureLSHSelfAttentionWrapper(n_heads=1, d_qk=64, d_v=64, causal=False, masked=False, output_dropout=0.0, attention_dropout=0.0, pure_lsh_implementation=None, bias=True, mode='train', num_weights=3, sparsity=16, weights_format='model', **pure_lsh_implementation_kwargs)

	Bases: trax.layers.combinators.Serial

Pure LSH serial.

	
__init__(n_heads=1, d_qk=64, d_v=64, causal=False, masked=False, output_dropout=0.0, attention_dropout=0.0, pure_lsh_implementation=None, bias=True, mode='train', num_weights=3, sparsity=16, weights_format='model', **pure_lsh_implementation_kwargs)

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
forward_and_or_backward(inputs, weights, state, rng, output_grad=None, compute_output=True, update_state=True)

	Performs batched forward and/or backward passes.

	Parameters

	
	inputs – inputs to the attention layer

	weights – weights for the attention layer

	state – state of the attention layer

	rng – PRNG key for the layer (shared across all examples and heads)

	output_grad – gradient of the loss wrt the output of the layer, or None.
This function performs the backward pass iff output_grad is not
None.

	compute_output – bool: whether to return the output of the forward pass
(for example, a pure backwards pass does not need to return the
output).

	update_state – bool: whether to return an updated layer state.

	Returns

	A tuple (output, new_state, inputs_grad, weights_grad).
- output is not None iff compute_output is True
- new_state is not None iff update_state is True
- inputs_grad & weights_grad are not None iff output_grad is not None

	
class trax.layers.research.efficient_attention.EncDecAttention(n_heads=2, d_qk=64, d_v=64, masked=True, mode='train', attention_dropout=0.0, output_dropout=0.0, n_parallel_heads=None, use_python_loop=False, use_reference_code=False)

	Bases: trax.layers.research.efficient_attention.EfficientAttentionBase

Memory-efficient encoder-decoder attention.

	
__init__(n_heads=2, d_qk=64, d_v=64, masked=True, mode='train', attention_dropout=0.0, output_dropout=0.0, n_parallel_heads=None, use_python_loop=False, use_reference_code=False)

	Constructs an EfficientAttentionBase instance.

	Parameters

	
	n_heads – Number of attention heads.

	n_in – Number of inputs to the layer (default 1).

	n_parallel_heads – Number of attention heads to compute in parallel.

	If n_parallel_heads is None (default), the entire layer is
computed with maximum parallelism. This mode is the fastest, but
also uses the most memory. Start with this mode, but switch to one
of the others if memory runs out.

	If n_parallel_heads is 1, attention is computed one head at a
time, and one example at a time. This mode uses the least memory
but is not as fast as batched attention. Use this mode when working
with very long sequences, such that any amount of parallelism won’t
fit in memory.

	If n_parallel_heads is a multiple of n_heads, attention is
computed for sub-batches of (n_parallel_heads // n_heads)
examples at a time.

	If 1 < n_parallel_heads < n_heads, attention is computed for
several heads at a time, but only within a single example. It must
be the case that n_heads is a multiple of n_parallel_heads. Use
this mode for long sequences, to strike a balance between
parallelism and memory usage.

	incremental – If True, enable fast inference for self-attention types.
Note that this flag should not be set when doing encoder-decoder
attention, but only when doing self-attention.

	predict_mem_len – Number of input positions to remember in a cache
when doing fast inference. Whenever the cache fills up, some input
elements will be forgotten.

	predict_drop_len – Number of input elements to drop once the fast
inference input cache fills up.

	use_python_loop – Set to True to use a Python loop when iterating over
sub-batches of examples/heads (as opposed to a JAX/XLA loop).
This option will increase compilation time and jitted code size,
potentially drastically. Using it is not recommended except for
testing/debugging. In particular, note that enabling this option on
TPU can decrease the maximum model size that will fit in memory.

	use_reference_code – Set to True to fall back to the reference
implementation of batched attention. This option will increase
compilation time and jitted code size, potentially drastically. Using
it is not recommended except for testing/debugging.

	
create_weights_unbatched(input_signature, rng)

	

	
forward_unbatched(q_antecedent, kv_antecedent, mask=None, *, weights, state, rng, update_state)

	Perform attention for a single batch element and head.

Subclasses should override this method.

	Parameters

	
	*inputs – Inputs for a single example (subclasses may use different inputs)

	weights – Weights for a single attention head

	state – State for a single example & attention head pair.

	Returns

	A tuple (output, new_state) – output and new state for a single example
and attention head.

	
class trax.layers.research.efficient_attention.LSHFF(d_ff, n_buckets, n_hashes=4, mode='train', kernel_initializer=<function ScaledInitializer.<locals>.Init>, bias_initializer=<function RandomNormalInitializer.<locals>.<lambda>>)

	Bases: trax.layers.base.Layer

Feed-forward block with LSH.

The original (non-LSH) feed-forward block is a triple Dense(d_ff)-Relu-Dense
that takes an input, makes it of size d_ff (usually larger than it was) and
then brings it back to the original size after Relu. It is commonly used in
Transformer models where it often accounts for most of the trainable weights.

The original block can be slow in decoding due to the need to fetch a lot of
weights from memory. The LSH block aims to exploit this sparsity. So in the
first Dense(d_ff) layer, instead of making a full matrix multiplication,
this block only multiplies by the parts of the weights matrix that have
the highest chance to give non-0 after Relu. This is determined by taking
a number of locality-sensitive hashes and masking to only include weights
that have one hash identical to the multiplied element.

	
__init__(d_ff, n_buckets, n_hashes=4, mode='train', kernel_initializer=<function ScaledInitializer.<locals>.Init>, bias_initializer=<function RandomNormalInitializer.<locals>.<lambda>>)

	Returns a LSH feed-forward block.

	
forward(x)

	Executes this layer as part of a forward pass through the model.

	Parameters

	x – Tensor of same shape and dtype as the input signature used to
initialize this layer.

	Returns

	Tensor of same shape and dtype as the input.

	
init_weights_and_state(input_signature)

	Randomly initializes this layer’s weights.

research.position_encodings

Experimenting with position encodings.

	
class trax.layers.research.position_encodings.AxialPositionalEncoding(shape=(64, 64, 3), d_embs=(384, 384, 256), kernel_initializer=<function RandomNormalInitializer.<locals>.<lambda>>, dropout=0.0, dropout_broadcast_dims=(), mode='train')

	Bases: trax.layers.base.Layer

Axial positional encoding.

	
__init__(shape=(64, 64, 3), d_embs=(384, 384, 256), kernel_initializer=<function RandomNormalInitializer.<locals>.<lambda>>, dropout=0.0, dropout_broadcast_dims=(), mode='train')

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
forward(inputs)

	Computes this layer’s output as part of a forward pass through the model.

A layer subclass overrides this method to define how the layer computes
outputs from inputs. If the layer depends on weights, state, or randomness
as part of the computation, the needed information can be accessed as
properties of the layer object: self.weights, self.state, and
self.rng. (See numerous examples in trax.layers.core.)

	Parameters

	inputs – Zero or more input tensors, packaged as described in the Layer
class docstring.

	Returns

	Zero or more output tensors, packaged as described in the Layer class
docstring.

	
init_weights_and_state(input_signature)

	Initializes weights and state, to handle input with the given signature.

A layer subclass must override this method if the layer uses weights or
state. To initialize weights, set self.weights to desired (typically
random) values. To initialize state (uncommon), set self.state to desired
starting values.

	Parameters

	input_signature – A ShapeDtype instance (if this layer takes one input)
or a list/tuple of ShapeDtype instances.

	
class trax.layers.research.position_encodings.SinCosPositionalEncoding(add_offset=2048, dropout=0.0, dropout_broadcast_dims=(-2,), start_from_zero_one_in=2, mode='train')

	Bases: trax.layers.base.Layer

Implements the sin-cos positional encoding.

	
__init__(add_offset=2048, dropout=0.0, dropout_broadcast_dims=(-2,), start_from_zero_one_in=2, mode='train')

	Creates a SinCosPositionalEncoding instance.

	Parameters

	
	add_offset – Maximumnumber to add to positions during training.

	dropout – Probability of not adding positional encoding to a sequence
position.

	dropout_broadcast_dims – Axes along which dropout mask values are
broadcast rather than individually set at random.

	start_from_zero_one_in – how often to start from 0 during training,
every one in that many times (e.g., if 4, then it’s 25% of the time).

	mode – One of ‘train’, ‘eval’, or ‘predict’.

	
forward(inputs)

	Returns the input activations, with added positional information.

	
init_weights_and_state(input_signature)

	Randomly initializes the positional encoding vectors.

	Parameters

	input_signature – ShapeDtype instance characterizing the input this
layer should compute on.

	
class trax.layers.research.position_encodings.FixedBasePositionalEncoding(bases=[11, 13, 14, 15], n_digits=8, start_from_zero_one_in=2, base_dropout_one_in=100, mode='train', initializer=<function RandomUniformInitializer.<locals>.<lambda>>)

	Bases: trax.layers.base.Layer

Implements fixed-base positional encoding.

	
__init__(bases=[11, 13, 14, 15], n_digits=8, start_from_zero_one_in=2, base_dropout_one_in=100, mode='train', initializer=<function RandomUniformInitializer.<locals>.<lambda>>)

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
forward(x)

	Computes this layer’s output as part of a forward pass through the model.

A layer subclass overrides this method to define how the layer computes
outputs from inputs. If the layer depends on weights, state, or randomness
as part of the computation, the needed information can be accessed as
properties of the layer object: self.weights, self.state, and
self.rng. (See numerous examples in trax.layers.core.)

	Parameters

	inputs – Zero or more input tensors, packaged as described in the Layer
class docstring.

	Returns

	Zero or more output tensors, packaged as described in the Layer class
docstring.

	
init_weights_and_state(input_signature)

	Initializes weights and state, to handle input with the given signature.

A layer subclass must override this method if the layer uses weights or
state. To initialize weights, set self.weights to desired (typically
random) values. To initialize state (uncommon), set self.state to desired
starting values.

	Parameters

	input_signature – A ShapeDtype instance (if this layer takes one input)
or a list/tuple of ShapeDtype instances.

	
trax.layers.research.position_encodings.threefry_2x32_prf(key, x: <sphinx.ext.autodoc.importer._MockObject object at 0x7febabe63e10>) → <sphinx.ext.autodoc.importer._MockObject object at 0x7febabe63cd0>

	Apply the threefry PRF to an array of inputs.

This function is vectorized over x.
For threefry_2x32: K = X = uint32[2]

	Parameters

	
	key – uint32[2] the key of the PRF

	x – uint32[…, 2] the inputs

	Returns

	uint32[…, 2] the outputs

	Return type

	y

	
trax.layers.research.position_encodings.threefry_2x32_prange(key, lo: int = 0, hi: int = 2)

	Splits a key into a stream of random keys.

This uses the little-endian counter mode.

	Parameters

	
	key – uint32[2] the key to split

	lo – the range to start extracting from

	hi – the range to stop extracting from

	Returns

	uint32[hi - lo, 2] the split keys

	Return type

	keys

	
class trax.layers.research.position_encodings.InfinitePositionalEncoding(drift=0.03, affine=True, transform='any', time_bin_length=None, mode='train')

	Bases: trax.layers.base.Layer

Infinite positional encoding.

	
__init__(drift=0.03, affine=True, transform='any', time_bin_length=None, mode='train')

	Initializes the encoding.

The encoding tries to roughly evenly traverse the latent space.
The recurrence time is dependent on how many bits per dimension you use.

There are two parameters to control randomization:
- randomizing the origin every 1/drift steps by letting it drift
- randomizing the origin per call

	Parameters

	
	drift – variance in position difference per unit of difference

	affine – whether to randomize the origin every call

	transform – learnable transform after encoding (any/diag/none)

	time_bin_length – Add features AxialPositionalEncoding learns if
TimeBinCausalAttention is the first layer.
bin_length should match TBCA.bin_length
If you set transform=’diag’, this flag increases your model capacity to
close to transform=’any’, though it will still train slower.

	mode – if ‘predict’, allow evaluating one token at a time

	
forward(inputs)

	Computes this layer’s output as part of a forward pass through the model.

A layer subclass overrides this method to define how the layer computes
outputs from inputs. If the layer depends on weights, state, or randomness
as part of the computation, the needed information can be accessed as
properties of the layer object: self.weights, self.state, and
self.rng. (See numerous examples in trax.layers.core.)

	Parameters

	inputs – Zero or more input tensors, packaged as described in the Layer
class docstring.

	Returns

	Zero or more output tensors, packaged as described in the Layer class
docstring.

	
init_weights_and_state(input_signature)

	Initializes weights and state, to handle input with the given signature.

A layer subclass must override this method if the layer uses weights or
state. To initialize weights, set self.weights to desired (typically
random) values. To initialize state (uncommon), set self.state to desired
starting values.

	Parameters

	input_signature – A ShapeDtype instance (if this layer takes one input)
or a list/tuple of ShapeDtype instances.

	
class trax.layers.research.position_encodings.TimeBinPositionalEncoding(time_bin_length, mode='train')

	Bases: trax.layers.base.Layer

Just the engineered features from InfinitePositionalEncoding.

	
num_features = 3

	

	
__init__(time_bin_length, mode='train')

	Initializes the encoding.

	Parameters

	
	time_bin_length – TimeBinCausalAttention.bin_length of the first layer.

	mode – if ‘predict’, allow evaluating one token at a time

	
forward(inputs)

	Computes this layer’s output as part of a forward pass through the model.

A layer subclass overrides this method to define how the layer computes
outputs from inputs. If the layer depends on weights, state, or randomness
as part of the computation, the needed information can be accessed as
properties of the layer object: self.weights, self.state, and
self.rng. (See numerous examples in trax.layers.core.)

	Parameters

	inputs – Zero or more input tensors, packaged as described in the Layer
class docstring.

	Returns

	Zero or more output tensors, packaged as described in the Layer class
docstring.

	
init_weights_and_state(input_signature)

	Initializes weights and state, to handle input with the given signature.

A layer subclass must override this method if the layer uses weights or
state. To initialize weights, set self.weights to desired (typically
random) values. To initialize state (uncommon), set self.state to desired
starting values.

	Parameters

	input_signature – A ShapeDtype instance (if this layer takes one input)
or a list/tuple of ShapeDtype instances.

trax.models

atari_cnn

Simple net for playing Atari games using PPO.

	
trax.models.atari_cnn.AtariCnn(n_frames=4, hidden_sizes=(32, 32), output_size=128, mode='train')

	An Atari CNN.

	
trax.models.atari_cnn.AtariCnnBody(n_frames=4, hidden_sizes=(32, 64, 64), output_size=512, mode='train', kernel_initializer=None, padding='VALID')

	An Atari CNN.

	
trax.models.atari_cnn.FrameStackMLP(n_frames=4, hidden_sizes=(64,), output_size=64, mode='train')

	MLP operating on a fixed number of last frames.

mlp

mlp – functions that assemble “multilayer perceptron” networks.

	
trax.models.mlp.MLP(layer_widths=(128, 64), activation_fn=<function Relu>, out_activation=False, flatten=True, mode='train')

	A “multilayer perceptron” (MLP) network.

This is a classic fully connected feedforward network, with one or more
layers and a (nonlinear) activation function between each layer. For
historical reasons, such networks are often called multilayer perceptrons;
but they are more accurately described as multilayer networks, where
each layer + activation function is a perceptron-like unit (see, e.g.,
[https://en.wikipedia.org/wiki/Multilayer_perceptron#Terminology]).

	Parameters

	
	layer_widths – Tuple of ints telling the number of layers and the width of
each layer. For example, setting layer_widths=(128, 64, 32) would
yield 3 layers with successive widths of 128, 64, and 32.

	activation_fn – Type of activation function between pairs of fully connected
layers; must be an activation-type subclass of Layer.

	out_activation – If True, include a copy of the activation function as the
last layer in the network.

	flatten – If True, insert a layer at the head of the network to flatten the
input tensor into a matrix of shape (batch_size. -1).

	mode – Ignored.

	Returns

	An assembled MLP network with the specified layers. This network can either
be initialized and trained as a full model, or can be used as a building
block in a larger network.

neural_gpu

Implementation of the improved Neural GPU (NGPU).

	
trax.models.neural_gpu.SaturationCost(x, limit=0.9)

	

	
trax.models.neural_gpu.DiagonalGate()

	Split channels in 3 parts. Shifts 1st and 3rd sections to left/right.

	
trax.models.neural_gpu.ConvDiagonalGRU(units, kernel_size=(3, 3))

	Build convolutional GRU with diagonal gating as in ImprovedNGPU.

	
trax.models.neural_gpu.NeuralGPU(d_feature=96, steps=16, vocab_size=2, mode='train')

	Implementation of Neural GPU: https://arxiv.org/abs/1702.08727.

	Parameters

	
	d_feature – Number of memory channels (dimensionality of feature embedding).

	steps – Number of times depthwise recurrence steps.

	vocab_size – Vocabulary size.

	mode – Whether we are training or evaluating or doing inference.

	Returns

	A NeuralGPU Stax model.

resnet

ResNet.

	
trax.models.resnet.ConvBlock(kernel_size, filters, strides, norm, non_linearity, mode='train')

	ResNet convolutional striding block.

	
trax.models.resnet.IdentityBlock(kernel_size, filters, norm, non_linearity, mode='train')

	ResNet identical size block.

	
trax.models.resnet.Resnet50(d_hidden=64, n_output_classes=1001, mode='train', norm=<sphinx.ext.autodoc.importer._MockObject object>, non_linearity=<function Relu>)

	ResNet.

	Parameters

	
	d_hidden – Dimensionality of the first hidden layer (multiplied later).

	n_output_classes – Number of distinct output classes.

	mode – Whether we are training or evaluating or doing inference.

	norm – Layer used for normalization, Ex: BatchNorm or
FilterResponseNorm.

	non_linearity – Layer used as a non-linearity, Ex: If norm is
BatchNorm then this is a Relu, otherwise for FilterResponseNorm this
should be ThresholdedLinearUnit.

	Returns

	The list of layers comprising a ResNet model with the given parameters.

	
trax.models.resnet.WideResnetBlock(channels, strides=(1, 1), bn_momentum=0.9, mode='train')

	WideResnet convolutional block.

	
trax.models.resnet.WideResnetGroup(n, channels, strides=(1, 1), bn_momentum=0.9, mode='train')

	

	
trax.models.resnet.WideResnet(n_blocks=3, widen_factor=1, n_output_classes=10, bn_momentum=0.9, mode='train')

	WideResnet from https://arxiv.org/pdf/1605.07146.pdf.

	Parameters

	
	n_blocks – int, number of blocks in a group. total layers = 6n + 4.

	widen_factor – int, widening factor of each group. k=1 is vanilla resnet.

	n_output_classes – int, number of distinct output classes.

	bn_momentum – float, momentum in BatchNorm.

	mode – Whether we are training or evaluating or doing inference.

	Returns

	The list of layers comprising a WideResnet model with the given parameters.

rl

Policy networks.

	
trax.models.rl.Policy(policy_distribution, body=None, normalizer=None, head_init_range=None, batch_axes=None, mode='train')

	Attaches a policy head to a model body.

	
trax.models.rl.Value(body=None, normalizer=None, inject_actions=False, inject_actions_n_layers=1, inject_actions_dim=64, batch_axes=None, mode='train', is_discrete=False, vocab_size=2, multiplicative_action_injection=False, head_init_range=None)

	Attaches a value head to a model body.

	
trax.models.rl.PolicyAndValue(policy_distribution, body=None, policy_top=<function Policy>, value_top=<function Value>, normalizer=None, joint=True, mode='train')

	Attaches policy and value heads to a model body.

	
trax.models.rl.Quality(body=None, normalizer=None, batch_axes=None, mode='train', n_actions=2, head_init_range=None)

	The network takes as input an observation and outputs values of actions.

rnn

RNNs (recursive neural networks).

	
trax.models.rnn.RNNLM(vocab_size, d_model=512, n_layers=2, rnn_cell=<sphinx.ext.autodoc.importer._MockObject object>, rnn_cell_d_state_multiplier=2, dropout=0.1, mode='train')

	Returns an RNN language model.

This model performs autoregressive language modeling:

	input: rank 2 tensor representing a batch of text strings via token IDs
plus padding markers; shape is (batch_size, sequence_length). The tensor
elements are integers in range(vocab_size), and 0 values mark padding
positions.

	output: rank 3 tensor representing a batch of log-probability
distributions for each sequence position over possible token IDs;
shape is (batch_size, sequence_length, vocab_size).

	Parameters

	
	vocab_size – Input vocabulary size – each element of the input tensor
should be an integer in range(vocab_size). These integers typically
represent token IDs from a vocabulary-based tokenizer.

	d_model – Embedding depth throughout the model.

	n_layers – Number of RNN layers.

	rnn_cell – Type of RNN cell; must be a subclass of Layer.

	rnn_cell_d_state_multiplier – Multiplier for feature depth of RNN cell
state.

	dropout – Stochastic rate (probability) for dropping an activation value
when applying dropout.

	mode – If ‘predict’, use fast inference; if ‘train’ apply dropout.

	Returns

	An RNN language model as a layer that maps from a tensor of tokens
to activations over a vocab set.

	
trax.models.rnn.GRULM(vocab_size=256, d_model=512, n_layers=1, mode='train')

	Returns a GRU (gated recurrent unit) language model.

This model performs autoregressive language modeling:

	input: rank 2 tensor representing a batch of text strings via token IDs
plus padding markers; shape is (batch_size, sequence_length). The tensor
elements are integers in range(vocab_size), and 0 values mark padding
positions.

	output: rank 3 tensor representing a batch of log-probability
distributions for each sequence position over possible token IDs;
shape is (batch_size, sequence_length, vocab_size).

	Parameters

	
	vocab_size – Input vocabulary size – each element of the input tensor
should be an integer in range(vocab_size). These integers typically
represent token IDs from a vocabulary-based tokenizer.

	d_model – Embedding depth throughout the model.

	n_layers – Number of GRU layers.

	mode – If ‘predict’, use fast inference (and omit the right shift).

	Returns

	A GRU language model as a layer that maps from a tensor of tokens
to activations over a vocab set.

	
trax.models.rnn.LSTMSeq2SeqAttn(input_vocab_size=256, target_vocab_size=256, d_model=512, n_encoder_layers=2, n_decoder_layers=2, n_attention_heads=1, attention_dropout=0.0, mode='train')

	Returns an LSTM sequence-to-sequence model with attention.

This model is an encoder-decoder that performs tokenized string-to-string
(“source”-to-“target”) transduction:

	inputs (2):

	source: rank 2 tensor representing a batch of text strings via token
IDs plus padding markers; shape is (batch_size, sequence_length). The
tensor elements are integers in range(input_vocab_size), and 0
values mark padding positions.

	target: rank 2 tensor representing a batch of text strings via token
IDs plus padding markers; shape is (batch_size, sequence_length). The
tensor elements are integers in range(output_vocab_size), and 0
values mark padding positions.

	output: rank 3 tensor representing a batch of log-probability
distributions for each sequence position over possible token IDs;
shape is (batch_size, sequence_length, vocab_size).

An example use would be to translate (tokenized) sentences from English to
German.

The model works as follows:

	Input encoder runs on the input tokens and creates activations that
are used as both keys and values in attention.

	Pre-attention decoder runs on the targets and creates
activations that are used as queries in attention.

	Attention runs on the queries, keys and values masking out input padding.

	Decoder runs on the result, followed by a cross-entropy loss.

	Parameters

	
	input_vocab_size – Input vocabulary size – each element of the input tensor
should be an integer in range(vocab_size). These integers typically
represent token IDs from a vocabulary-based tokenizer.

	target_vocab_size – Target vocabulary size.

	d_model – Final dimension of tensors at most points in the model, including
the initial embedding output.

	n_encoder_layers – Number of LSTM layers in the encoder.

	n_decoder_layers – Number of LSTM layers in the decoder after attention.

	n_attention_heads – Number of attention heads.

	attention_dropout – Stochastic rate (probability) for dropping an activation
value when applying dropout within an attention block.

	mode – If ‘predict’, use fast inference. If ‘train’, each attention block
will include dropout; else, it will pass all values through unaltered.

	Returns

	An LSTM sequence-to-sequence model as a layer that maps from a
source-target tokenized text pair to activations over a vocab set.

transformer

Transformer models: encoder, decoder, language model, and encoder-decoder.

The “Transformer” name and network architecture were introduced in the paper
[Attention Is All You Need](https://arxiv.org/abs/1706.03762).

	
trax.models.transformer.TransformerEncoder(vocab_size, n_classes=10, d_model=512, d_ff=2048, n_layers=6, n_heads=8, max_len=2048, dropout=0.1, dropout_shared_axes=None, mode='train', ff_activation=<function Relu>)

	Returns a Transformer encoder suitable for N-way classification.

This model maps tokenized text to N-way (n_classes) activations:

	input: Array representing a batch of text strings via token IDs plus
padding markers; shape is (batch_size, sequence_length), where
sequence_length <= max_len. Array elements are integers in
range(vocab_size), and 0 values mark padding positions.

	output: Array representing a batch of raw (non-normalized) activations
over n_classes categories; shape is (batch_size, n_classes).

	Parameters

	
	vocab_size – Input vocabulary size – each element of the input array
should be an integer in range(vocab_size). These integers typically
represent token IDs from a vocabulary-based tokenizer.

	n_classes – Last/innermost dimension of output arrays, suitable for N-way
classification.

	d_model – Last/innermost dimension of activation arrays at most points in
the model, including the initial embedding output.

	d_ff – Last/innermost dimension of special (typically wider)
Dense layer in the feedforward part of each encoder block.

	n_layers – Number of encoder blocks. Each block includes attention, dropout,
residual, layer-norm, feedforward (Dense), and activation
layers.

	n_heads – Number of attention heads.

	max_len – Maximum symbol length for positional encoding.

	dropout – Stochastic rate (probability) for dropping an activation value
when applying dropout within encoder blocks. The same rate is also
used for attention dropout in encoder blocks.

	dropout_shared_axes – Tensor axes on which to share a dropout mask.
Sharing along batch and sequence axes (dropout_shared_axes=(0,1))
is a useful way to save memory and apply consistent masks to activation
vectors at different sequence positions.

	mode – If 'train', each encoder block will include dropout; else, it
will pass all values through unaltered.

	ff_activation – Type of activation function at the end of each encoder
block; must be an activation-type subclass of Layer.

	Returns

	A Transformer model that maps strings (conveyed by token IDs) to
raw (non-normalized) activations over a range of output classes.

	
trax.models.transformer.TransformerDecoder(vocab_size=None, d_model=512, d_ff=2048, n_layers=6, n_heads=8, max_len=2048, dropout=0.1, dropout_shared_axes=None, mode='train', ff_activation=<function Relu>)

	Returns a Transformer decoder.

This model maps sequential inputs to sequential outputs:

	input if vocab_size is specified: array representing a batch
of text strings via token IDs plus padding markers; shape is
(batch_size, sequence_length). The tensor elements are integers in
range(vocab_size), and 0 values mark padding positions.

	input if vocab_size is None: 3-D array representing a batch of
sequences of activation vectors; shape is (batch_size, sequence_length,
d_model).

	output: 3-D array with shape (batch_size, sequence_length, d_model).

The model uses causal attention and does not shift the input to the right.
Thus, the output for position t is based on inputs up to and including
position t.

	Parameters

	
	vocab_size – If specified, gives the input vocabulary size – each element
of the input tensor should be an integer in range(vocab_size).
If None, indicates that the model expects as input sequences of
floating point vectors, each with d_model components.

	d_model – Last/innermost dimension of activation arrays at most points in
the model, including the initial embedding output.

	d_ff – Last/innermost dimension of special (typically wider)
Dense layer in the feedforward part of each encoder block.

	n_layers – Number of decoder blocks. Each block includes attention, dropout,
residual, layer-norm, feedforward (Dense), and activation
layers.

	n_heads – Number of attention heads.

	max_len – Maximum symbol length for positional encoding.

	dropout – Stochastic rate (probability) for dropping an activation value
when applying dropout within decoder blocks. The same rate is also
used for attention dropout in decoder blocks.

	dropout_shared_axes – Tensor axes on which to share a dropout mask.
Sharing along batch and sequence axes (dropout_shared_axes=(0,1))
is a useful way to save memory and apply consistent masks to activation
vectors at different sequence positions.

	mode – If 'train', each encoder block will include dropout; else, it
will pass all values through unaltered.

	ff_activation – Type of activation function at the end of each encoder
block; must be an activation-type subclass of Layer.

	Returns

	a Transformer model that maps strings
(conveyed by token IDs) to sequences of activation vectors.

If vocab_size is None: a Transformer model that maps sequences of
activation vectors to sequences of activation vectors.

	Return type

	If vocab_size is defined

	
trax.models.transformer.TransformerLM(vocab_size, d_model=512, d_ff=2048, n_layers=6, n_heads=8, max_len=2048, dropout=0.1, dropout_shared_axes=None, mode='train', ff_activation=<function Relu>)

	Returns a Transformer language model.

This model performs autoregressive language modeling:

	input: Array representing a batch of text strings via token IDs
plus padding markers; shape is (batch_size, sequence_length). Array
elements are integers in range(vocab_size), and 0 values mark padding
positions.

	output: 3-D array of raw activations with last/innermost dimension of
vocab_size, suitable for decoding into a batch of token strings;
shape is (batch_size, sequence_length, vocab_size).

This model uses only the decoder part of the overall Transformer.

	Parameters

	
	vocab_size – Input vocabulary size – each element of the input array
should be an integer in range(vocab_size). These integers typically
represent token IDs from a vocabulary-based tokenizer.

	d_model – Last/innermost dimension of activation arrays at most points in
the model, including the initial embedding output.

	d_ff – Last/innermost dimension of special (typically wider)
Dense layer in the feedforward part of each encoder block.

	n_layers – Number of decoder blocks. Each block includes attention, dropout,
residual, layer-norm, feedforward (Dense), and activation
layers.

	n_heads – Number of attention heads.

	max_len – Maximum symbol length for positional encoding.

	dropout – Stochastic rate (probability) for dropping an activation value
when applying dropout within decoder blocks. The same rate is also
used for attention dropout in decoder blocks.

	dropout_shared_axes – Tensor axes on which to share a dropout mask.
Sharing along batch and sequence axes (dropout_shared_axes=(0,1))
is a useful way to save memory and apply consistent masks to activation
vectors at different sequence positions.

	mode – If 'predict', use fast inference. If 'train', each decoder
block will include dropout; else, it will pass all values through
unaltered.

	ff_activation – Type of activation function at the end of each encoder
block; must be an activation-type subclass of Layer.

	Returns

	A Transformer language model that maps strings (represented as token ID
sequences) to sequences of raw (non-normalized) activation vectors; each
vector in the sequence can be mapped (e.g., by argmax) to a token ID.

	
trax.models.transformer.Transformer(input_vocab_size, output_vocab_size=None, d_model=512, d_ff=2048, n_encoder_layers=6, n_decoder_layers=6, n_heads=8, max_len=2048, dropout=0.1, dropout_shared_axes=None, mode='train', ff_activation=<function Relu>)

	Returns a full Transformer model.

This model is an encoder-decoder that performs tokenized string-to-string
(“source”-to-“target”) transduction:

	inputs (2):

	source: Array representing a batch of text strings via token
IDs plus padding markers; shape is (batch_size, sequence_length),
where sequence_length <= max_len. Array elements are integers in
range(input_vocab_size), and 0 values mark padding positions.

	target: Array representing a batch of text strings via token
IDs plus padding markers; shape is (batch_size, sequence_length),
where sequence_length <= max_len. Array elements are integers in
range(output_vocab_size), and 0 values mark padding positions.

	output: 3-D array of raw activations with last/innermost dimension of
output_vocab_size, suitable for decoding into a batch of token
strings; shape is (batch_size, sequence_length, vocab_size).

An example use would be to translate (tokenized) sentences from English to
German.

	Parameters

	
	input_vocab_size – Input vocabulary size – each element of the input tensor
should be an integer in range(vocab_size). These integers typically
represent token IDs from a vocabulary-based tokenizer.

	output_vocab_size – If specified, gives the vocabulary size for the targets;
if None, then input and target integers (token IDs) are assumed to
come from the same vocabulary.

	d_model – Last/innermost dimension of activation arrays at most points in
the model, including the initial embedding output.

	d_ff – Last/innermost dimension of special (typically wider)
Dense layer in the feedforward part of each encoder block.

	n_encoder_layers – Number of encoder blocks.

	n_decoder_layers – Number of decoder blocks.

	n_heads – Number of attention heads.

	max_len – Maximum symbol length for positional encoding.

	dropout – Stochastic rate (probability) for dropping an activation value
when applying dropout within encoder/decoder blocks. The same rate is
also used for attention dropout in encoder/decoder blocks.

	dropout_shared_axes – Tensor axes on which to share a dropout mask.
Sharing along batch and sequence axes (dropout_shared_axes=(0,1))
is a useful way to save memory and apply consistent masks to activation
vectors at different sequence positions.

	mode – If 'predict', use fast inference. If 'train', each
encoder/decoder block will include dropout; else, it will pass all
values through unaltered.

	ff_activation – Type of activation function at the end of each
encoder/decoder block; must be an activation-type subclass of
Layer.

	Returns

	A Transformer model as a layer that maps from a source-target tokenized
text pair to activations over a vocab set.

reformer.reformer

Reformer Models.

	
trax.models.reformer.reformer.DecoderBlock(d_model, d_ff, d_attention_key, d_attention_value, n_heads, attention_type, dropout, ff_activation, ff_dropout, ff_use_sru, ff_chunk_size, ff_sparsity, attention_chunk_size, n_attention_layers=1, n_feedforward_layers=1, center_layernorm=True, use_bfloat16=False, mode='train')

	Reversible transformer decoder layer.

	Parameters

	
	d_model – int: depth of embedding

	d_ff – int: depth of feed-forward layer

	d_attention_key – int: depth of key vector for each attention head

	d_attention_value – int: depth of value vector for each attention head

	n_heads – int: number of attention heads

	attention_type – subclass of tl.BaseCausalAttention: attention class to use

	dropout – float: dropout rate (how much to drop out)

	ff_activation – the non-linearity in feed-forward layer

	ff_dropout – the dropout rate in feed-forward layer

	ff_use_sru – int; if > 0, we use this many SRU layers instead of feed-forward

	ff_chunk_size – int; if > 0, chunk feed-forward into this-sized chunks

	ff_sparsity – int, if > 0 use sparse feed-forward block with this sparsity

	attention_chunk_size – int, if > 0 run attention chunked at this size

	n_attention_layers – how many residual causal attention layers should we
have before the feed-forward block (default: 1, the standard block)

	n_feedforward_layers – how many FFNN layers should we have (default 1).

	center_layernorm – whether to use centering in LayerNorm (default) or if
to skip it, which is known as RMS normalization.

	use_bfloat16 – whether to use bfloat16 for weights (default: False).

	mode – str: ‘train’ or ‘eval’

	Returns

	the layer.

	
trax.models.reformer.reformer.ReformerLM(vocab_size, d_model=512, d_ff=2048, d_attention_key=64, d_attention_value=64, n_layers=6, n_heads=8, dropout=0.1, max_len=2048, attention_type=<sphinx.ext.autodoc.importer._MockObject object>, pos_type=None, pos_axial_shape=(), pos_d_axial_embs=None, ff_activation=<function FastGelu>, ff_use_sru=0, ff_chunk_size=0, ff_sparsity=0, loss_sparsity_type='mult', loss_sparsity=0, loss_d_lowrank=0, loss_sparsity_prob=None, attention_chunk_size=0, mode='train')

	Reversible transformer language model (only uses a decoder, no encoder).

	Parameters

	
	vocab_size – int: vocab size

	d_model – int: depth of each half of the two-part features

	d_ff – int: depth of feed-forward layer

	d_attention_key – int: depth of key vector for each attention head

	d_attention_value – int: depth of value vector for each attention head

	n_layers – int: number of decoder layers

	n_heads – int: number of attention heads

	dropout – float: dropout rate (how much to drop out)

	max_len – int: maximum symbol length for positional encoding

	attention_type – class: attention class to use, such as SelfAttention.

	pos_type – string, the type of positional embeddings to use.

	pos_axial_shape – tuple of ints: input shape to use for the axial position
encoding. If unset, axial position encoding is disabled.

	pos_d_axial_embs – tuple of ints: depth of position embedding for each axis.
Tuple length must match pos_axial_shape, and values must sum to d_model.

	ff_activation – the non-linearity in feed-forward layer

	ff_use_sru – int; if > 0, we use this many SRU layers instead of feed-forward

	ff_chunk_size – int; if > 0, chunk feed-forward into this-sized chunks

	ff_sparsity – int, if > 0 use sparse feed-forward block with this sparsity

	loss_sparsity_type – str, type of sparsity to used in loss layer. See
SparseDenseWithOptions for options. None if no sparsity should be used.

	loss_sparsity – int, the sparsity for loss layer (if used)

	loss_d_lowrank – int, the dimensions for intermediate layer (if used)

	loss_sparsity_prob – float, the probability for sparse version of loss to be
used. If None, only sparse version is used.

	attention_chunk_size – int, if > 0 run attention chunked at this size

	mode – str: ‘train’, ‘eval’, or ‘predict’

	Returns

	the layer.

	
trax.models.reformer.reformer.ReformerShortenLM(vocab_size, shorten_factor=1, d_embedding=256, d_model=512, d_ff=2048, d_attention_key=64, d_attention_value=64, n_layers=6, n_heads=8, dropout=0.1, max_len=2048, attention_type=<sphinx.ext.autodoc.importer._MockObject object>, pos_type=None, pos_axial_shape=(), pos_d_axial_embs=None, ff_activation=<function FastGelu>, ff_use_sru=0, ff_chunk_size=0, ff_sparsity=0, attention_chunk_size=0, mode='train')

	Reversible transformer language model with shortening.

When shorten_factor is F and processing an input of shape [batch, length],
we embed the (shifted-right) input and then group each F elements (on length)
into a single vector – so that in the end we process a tensor of shape

[batch, length // F, d_model]

almost until the end – at the end it’s un-shortend and a SRU is applied.
This reduces the length processed inside the main model body, effectively
making the model faster but possibly slightly less accurate.

	Parameters

	
	vocab_size – int: vocab size

	shorten_factor – by how much to shorten, see above

	d_embedding – the depth of the embedding layer and final logits

	d_model – int: depth of each half of the two-part features

	d_ff – int: depth of feed-forward layer

	d_attention_key – int: depth of key vector for each attention head

	d_attention_value – int: depth of value vector for each attention head

	n_layers – int: number of decoder layers

	n_heads – int: number of attention heads

	dropout – float: dropout rate (how much to drop out)

	max_len – int: maximum symbol length for positional encoding

	attention_type – class: attention class to use, such as SelfAttention.

	pos_type – string, the type of positional embeddings to use.

	pos_axial_shape – tuple of ints: input shape to use for the axial position
encoding. If unset, axial position encoding is disabled.

	pos_d_axial_embs – tuple of ints: depth of position embedding for each axis.
Tuple length must match pos_axial_shape, values must sum to d_embedding.

	ff_activation – the non-linearity in feed-forward layer

	ff_use_sru – int; if > 0, we use this many SRU layers instead of feed-forward

	ff_chunk_size – int; if > 0, chunk feed-forward into this-sized chunks

	ff_sparsity – int, if > 0 use sparse feed-forward block with this sparsity

	attention_chunk_size – int, if > 0 run attention chunked at this size

	mode – str: ‘train’ or ‘eval’

	Returns

	the layer.

	
trax.models.reformer.reformer.EncoderBlock(d_model, d_ff, n_heads, attention_type, dropout, ff_activation, ff_dropout, ff_use_sru=0, ff_chunk_size=0, ff_sparsity=0, attention_chunk_size=0, center_layernorm=True, use_bfloat16=False, use_two_swaps_per_block=True, mode='train')

	Returns a list of layers that implements a Reformer encoder block.

The input to the layer is a pair, (activations, mask), where the mask was
created from the original source tokens to prevent attending to the padding
part of the input.

	Parameters

	
	d_model – int: depth of embedding

	d_ff – int: depth of feed-forward layer

	n_heads – int: number of attention heads

	attention_type – subclass of tl.BaseCausalAttention: attention class to use

	dropout – float: dropout rate (how much to drop out)

	ff_activation – the non-linearity in feed-forward layer

	ff_dropout – the dropout rate in feed-forward layer

	ff_use_sru – int; if > 0, we use this many SRU layers instead of feed-forward

	ff_chunk_size – int; if > 0, chunk feed-forward into this-sized chunks

	ff_sparsity – int, if > 0 use sparse feed-forward block with this sparsity

	attention_chunk_size – int, if > 0 run attention chunked at this size

	center_layernorm – whether to use centering in LayerNorm (default) or if
to skip it, which is known as RMS normalization.

	use_bfloat16 – whether to use bfloat16 for weights (default: False)

	use_two_swaps_per_block – bool, if True use two reversible swaps in Encoder
block, otherwise use only one swap.

	mode – str: ‘train’ or ‘eval’

	Returns

	A list of layers that maps (activations, mask) to (activations, mask).

	
trax.models.reformer.reformer.EncoderDecoderBlock(d_model, d_ff, n_heads, dropout, ff_activation, ff_dropout, mode, ff_use_sru=0, ff_chunk_size=0, ff_sparsity=0)

	Reversible transformer decoder layer.

	Parameters

	
	d_model – int: depth of embedding

	d_ff – int: depth of feed-forward layer

	n_heads – int: number of attention heads

	dropout – float: dropout rate (how much to drop out)

	ff_activation – the non-linearity in feed-forward layer

	ff_dropout – float: (optional) separate dropout rate for feed-forward layer

	mode – str: ‘train’ or ‘eval’

	ff_use_sru – int; if > 0, we use this many SRU layers instead of feed-forward

	ff_chunk_size – int; if > 0, chunk feed-forward into this-sized chunks

	ff_sparsity – int, if > 0 use sparse feed-forward block with this sparsity

	Returns

	the layer.

	
trax.models.reformer.reformer.Reformer(input_vocab_size, output_vocab_size=None, d_model=512, d_ff=2048, n_encoder_layers=6, n_decoder_layers=6, n_heads=8, dropout=0.1, max_len=2048, ff_activation=<function Relu>, ff_dropout=None, mode='train', pos_type=None, pos_axial_shape=None, pos_d_axial_embs=None, ff_use_sru=0, ff_chunk_size=0, ff_sparsity=0)

	Reversible transformer encoder-decoder model.

This model expects an input pair: target, source.

At the moment, this model supports dot-product attention only. For the
attention types in the Reformer paper, see ReformerLM.

	Parameters

	
	input_vocab_size – int: vocab size of the source.

	output_vocab_size – int (optional): vocab size of the target. If None, the
source and target are assumed to have the same vocab.

	d_model – int: depth of embedding

	d_ff – int: depth of feed-forward layer

	n_encoder_layers – int: number of encoder layers

	n_decoder_layers – int: number of decoder layers

	n_heads – int: number of attention heads

	dropout – float: dropout rate (how much to drop out)

	max_len – int: maximum symbol length for positional encoding

	ff_activation – the non-linearity in feed-forward layer

	ff_dropout – float: (optional) separate dropout rate at feed-forward
nonlinearity. This is called relu_dropout in T2T.

	mode – str: ‘train’ or ‘eval’

	pos_type – string, the type of positional embeddings to use.

	pos_axial_shape – tuple of ints: input shape to use for the axial position
encoding. If unset, axial position encoding is disabled.

	pos_d_axial_embs – tuple of ints: depth of position embedding for each axis.
Tuple length must match pos_axial_shape, and values must sum to d_model.

	ff_use_sru – int; if > 0, we use this many SRU layers instead of feed-forward

	ff_chunk_size – int; if > 0, chunk feed-forward into this-sized chunks

	ff_sparsity – int, if > 0 use sparse feed-forward block with this sparsity

	Returns

	A Reformer model as a layer that maps from a target, source pair to
activations over a vocab set.

research.bert

BERT.

	
class trax.models.research.bert.AddBias(n_in=1, n_out=1, name=None, sublayers_to_print=None)

	Bases: trax.layers.base.Layer

	
forward(inputs)

	Computes this layer’s output as part of a forward pass through the model.

A layer subclass overrides this method to define how the layer computes
outputs from inputs. If the layer depends on weights, state, or randomness
as part of the computation, the needed information can be accessed as
properties of the layer object: self.weights, self.state, and
self.rng. (See numerous examples in trax.layers.core.)

	Parameters

	inputs – Zero or more input tensors, packaged as described in the Layer
class docstring.

	Returns

	Zero or more output tensors, packaged as described in the Layer class
docstring.

	
init_weights_and_state(input_signature)

	Initializes weights and state, to handle input with the given signature.

A layer subclass must override this method if the layer uses weights or
state. To initialize weights, set self.weights to desired (typically
random) values. To initialize state (uncommon), set self.state to desired
starting values.

	Parameters

	input_signature – A ShapeDtype instance (if this layer takes one input)
or a list/tuple of ShapeDtype instances.

	
trax.models.research.bert.BERTClassifierHead(n_classes)

	

	
trax.models.research.bert.BERTRegressionHead()

	

	
trax.models.research.bert.BERTMLMHead(vocab_size=30522)

	

	
trax.models.research.bert.BERTPretrainingLoss()

	

	
trax.models.research.bert.BERTPretrainingHead(n_classes)

	

	
trax.models.research.bert.BERT(d_model=768, vocab_size=30522, max_len=512, type_vocab_size=2, n_heads=12, d_ff=3072, n_layers=12, head=None, init_checkpoint=None, mode='eval')

	BERT (default hparams are for bert-base-uncased).

	
class trax.models.research.bert.PretrainedBERT(*sublayers, init_checkpoint=None)

	Bases: trax.layers.combinators.Serial

Wrapper that always initializes weights from a pre-trained checkpoint.

	
__init__(*sublayers, init_checkpoint=None)

	Creates a partially initialized, unconnected layer instance.

	Parameters

	
	n_in – Number of inputs expected by this layer.

	n_out – Number of outputs promised by this layer.

	name – Class-like name for this layer; for use when printing this layer.

	sublayers_to_print – Sublayers to display when printing out this layer;
if None (the default), display all sublayers.

	
classmethod download_model(model_name)

	Returns model dir path with model filename.

	
init_weights_and_state(input_signature)

	Initializes weights and state for inputs with the given signature.

research.skipping_transformer

trax.data

inputs

Data sources and input processing.

Trax authors recommend constructing input pipelines using layer-like functions
and combinators. For example, following is an input pipeline for training
sentiment analysis tasks on the IMDB dataset:

from trax import data

inputs = data.Serial(
 data.TFDS('imdb_reviews', keys=('text', 'label'), train=True),
 data.Tokenize(vocab_file='en_8k.subword', keys=[0]),
 data.Shuffle(),
 data.FilterByLength(max_length=2048, length_keys=[0]),
 data.BucketByLength(boundaries=[32, 128, 512, 2048],
 batch_sizes=[128, 32, 8, 2, 1],
 length_keys=[0]),
 data.AddLossWeights()
)

Each of these functions creates a Python generator of tuples of data arrays.
For example:

data.TFDS('imdb_reviews', keys=('text', 'label'), train=True),

creates a generator of examples (tuples of NumPy ndarray objects)
from the TFDS imdb_reviews dataset, see here:
https://www.tensorflow.org/datasets/catalog/imdb_reviews

As you can see on the website above, this dataset has ‘text’ and ‘label’ fields
and we create tuples containing the text and the label from the training split
by specifying keys=(‘text’, ‘label’), train=True.

Other functions, like Tokenize and Shuffle, take a generator and output
another generator, in this way converting tuples into other tuples or mixing
the training stream. For example, Tokenize(..., keys=[0]) tokenizes the
first element of a tuple – converting it from text to a NumPy integer array.
And Shuffle randomizes the order of examples.

Note that all elements in the data pipeline are just functions on generators,
so you can use Python’s map and filter and other native functions too.
For example, you can create an input pipeline for a language model reading
lines from my_file.txt as follows:

inputs = data.Serial(
 lambda _: open('my_file.txt'),
 lambda g: map(lambda line: line.strip(), g),
 data.Tokenize(vocab_file='en_8k.subword'),
 lambda g: filter(lambda x: x.shape[0] < 513, g), # At most 512 tokens.
 data.Shuffle(),
 lambda g: map(lambda x: (x, x)), # Language models have inputs = targets.
 data.BucketByLength(boundaries=[32, 64, 128, 256, 512],
 batch_sizes=[32, 16, 8, 4, 2, 1]),
 data.AddLossWeights(id_to_mask=0)
)

	
trax.data.inputs.Serial(*fns)

	Combines generator functions into one that runs them serially.

	
trax.data.inputs.Parallel(fns=None, counters=None, reweight_by_minimum=False, gradually_reweight=False, use_remainders=False)

	Combines generator functions into one that runs them in parallel.

	Parameters

	
	fns – a sequence of datasets which are combined in parallel.

	counters – a sequence of ints with same length as fns, please see comments on
its use below.

	reweight_by_minimum – if set to True, then we re-weight every counter by the
minimal counter. E.g. counters (10000, 100000) are translated to (1, 10)
and hence for every 10 examples from the second dataset we are getting
1 example from the first dataset. Without reweighting first we would see
20 examples from the first and second dataset and then 90 thousand eamples
only from the first dataset.

	gradually_reweight – if set to True, then we loop through the generators
using a recursive rule defined in emit_examples. First we sort generators
by the counters. If we have datasets with counters 1, 20, 40
(after sorting) then we yield examples (a(b c^2)^20)^*, where examples of
type a come from the first dataset, of type b from the second and of type
c from the third. The exponents are obtained through divisions of
subsequent counters.

	use_remainders – if set to True as weell as gradually_reweight is set to
True and counters are 1, 20, 45 then after dealing with all examples in
the format (a(b c^2)^20)^*, the generator yields the remaining 5 examples
from the dataset with counter 45.

	Returns

	the generator yields samples according to given;
if counters are not given then samples are genereted uniformly.

	Return type

	parallel_generator

Example 1:

gen = data.Parallel([dataset1, dataset2, dataset3], counters=(2, 1, 3))

defines a generator that yields 33% examples from dataset1, 16% examples from
dataset2 and 50% examples from dataset3.

Example 2:

gen = data.Parallel([dataset1, dataset2, dataset3], counters=(20, 50, 30))

defines a generator that yields 20% examples from dataset1, 50% examples from
dataset2 and 30% examples from dataset3.

	
trax.data.inputs.Shuffle(queue_size=1024)

	Returns a shuffle function with the given queue size.

	
trax.data.inputs.Batch(batch_size)

	Returns a batching function with given batch size.

	
trax.data.inputs.FilterEmptyExamples(axes=None, debug=False)

	Filters empty examples.

Filters any example that has an array of size (0,) (if axes=None).
Alternatively, checks only axes provided in `axes’ list. Contrary to
FilterByLength used with several elements with length_axis, here the example
would be filtered if ANY of the dimensions listed in `axes’ contains an empty
array.

	Parameters

	
	axes – list of indices to check, if None, all of them.

	debug – If true, emits a log everytime we filter out an empty example.

	Returns

	Function filtering empty examples.

	
trax.data.inputs.FilterByLength(max_length, min_length=0, length_keys=None, length_axis=0)

	Returns a function that filters out examples by length.

	Parameters

	
	max_length – int. If not None, indicates maximum length.

	min_length – int. If not None, indicates minimum length.

	length_keys – (list) which example keys to take into account.

	length_axis – which shape axis to take into account.

	Returns

	a function that filters out examples by length.

	
trax.data.inputs.TruncateToLength(len_map=None)

	Returns a stream function that resizes items as specified by len_map.

	Parameters

	len_map – Dictionary that specifies maximum shapes for potentially multiple
features per stream item. For example, given a stream of tokenized
string pairs, one could enforce a maximum length of 256 tokens for each
string by using len_map={0: (256,), 1: (256,)}.

	
trax.data.inputs.PadToLength(len_map=None, pad_value=0, multiple=False)

	Pads the values to lengths given in `len_map’.

len_map contains a dictionary of example keys to dimension sizes.

	Parameters

	
	len_map – dict of int to int, we pad examples to lengths
given by the values of the dict. If multiple is True, the dimensions are
padded to multiple of this value.

	pad_value – dict of int to int. The value gets applied to
constant_values on numpy.pad per given dimension.

	multiple – boolean. If False, pads to the value of len_map. If True, pads to
closest multiple of value of len_map.

	Returns

	Function to pad examples to given lengths.

	
trax.data.inputs.BucketByLength(boundaries, batch_sizes, length_keys=None, length_axis=0, strict_pad_on_len=False)

	Returns a function for bucketing inputs, see bucket_by_length.

	
trax.data.inputs.MLM(vocab_size=None, max_length=None, noise_density=0.15, mean_noise_span_length=3.0)

	Pipeline that just does MLM.

	
trax.data.inputs.PrefixLM(input_length=128, output_length=512)

	Chunks examples so as to make inputs/outputs of specified lenghts.

	
trax.data.inputs.ConcatenateToLMInput(pad_to_length=None)

	Prepares the input needed for training of Language Models.

Each example needs to contain two elements (input and target).
Input is concatenated to target and, if pad_to_length is given, padded to
length provided.
The loss_weights indicates only the target, without input nor padding.

	Parameters

	pad_to_length – int, total length of padding of input and target arrays.

	Returns

	Function to return input for a LM.

	
trax.data.inputs.CastTo(dtype=<sphinx.ext.autodoc.importer._MockObject object>, indices=(0, 1), debug=False)

	Casts the given indices to the given dtype.

	
trax.data.inputs.AppendValue(val=None)

	Appends values provided in ‘val` to inputs.

val are keyed by example keys, its values contain appended tensors.

	Parameters

	val – dict of int to tensors. Specific keys get the tensors specified in
values appended.

	Returns

	Funtion to append tensors to examples.

	
trax.data.inputs.AddLossWeights(id_to_mask=None)

	Returns a function to add loss weights; see add_loss_weights.

	
trax.data.inputs.UnBatch()

	Returns a function which unbatches.

	
trax.data.inputs.Prefetch(n_prefetch=2)

	Pre-fetches a number of examples from generator in a separate process.

	
trax.data.inputs.UniformlySeek(name=None, host_id=None, n_hosts=None, dataset_size=None)

	Sets each host at (dataset_size/n_hosts)-th of the dataset.

	
trax.data.inputs.CountAndSkip(name)

	Returns a function that counts and skips examples (see above).

	
trax.data.inputs.Log(n_steps_per_example=1, only_shapes=True)

	Creates a logging component of the input pipeline.

	
trax.data.inputs.shuffle(samples, queue_size)

	Shuffles a sample stream using a random-out next-in queue of given size.

	Parameters

	
	samples – Stream of samples for eventual use as training data or eval data.

	queue_size – Minimum number of samples within which the streamed shuffling
takes place.

	Yields

	Shuffled stream of samples, ready for further processing, e.g., grouping
into batches.

	
trax.data.inputs.batch(generator, batch_size)

	Batch and pad generator as in tf.data.Dataset.padded_batch.

	
trax.data.inputs.pad_to_max_dims(tensors, boundary=None, strict_pad_on_len=False)

	Pad a tuple of tensors to a joint dimension and return their batch.

For example, a pair of tensors of shape (2, 10) and (3, 9) will be padded
to (3, 10) both and the returned tensor will have shape (2, 3, 10).

When boundary is specified, we try to pad all unknown dimensions to boundary
if possible, which can help reduce the number of different shapes occurring
in the tensors and speed up XLA compilation. So, for example, a pair of
tensors of shapes (8, 10), (8, 9) with boundary=12 will be padded to (8, 12).

One special case occurs when boundary is much higher than the padding length
that we’d use without boundary. For example, tensors (2, 10) and (3, 9) with
boundary=12 could end up padded to (12, 12), but this is very wasteful in
the first dimension. In that case, we will use the closest power-of-2 instead
of the boundary, so the we will end up padding to (4, 12) instead of (12, 12).

	Parameters

	
	tensors – a tuple or list of tensors to pad

	boundary – int or None; if given, expand the padded dimensions to this size

	strict_pad_on_len – bool; if true we pad on the length dimension, dim[0]
strictly as a multiple of boundary.

	Returns

	a tensor, the tensors padded together

	
trax.data.inputs.bucket_by_length(generator, length_fn, boundaries, batch_sizes, strict_pad_on_len=False)

	Bucket by length, like tf.data.experimental.bucket_by_sequence_length.

This function draws examples from the provided generator and puts an
example into a bucket depending on l = length_fn(example). Which bucket
is used depends on between which boundaries is l. When a bucket reaches
its batch size, as specified by batch_sizes, generates a batch of
padded examples from this bucket.

	Parameters

	
	generator – python generator to draw data from.

	length_fn – a function taking the example and returning the length.

	boundaries – a list of bucket boundaries.

	batch_sizes – a list of batch sizes.

	strict_pad_on_len – bool; if true we pad on the length dimension, dim[0]
strictly as a multiple of boundary.

	Yields

	An input batch, which comes from one of the buckets.

	
trax.data.inputs.add_loss_weights(generator, id_to_mask=None)

	Add weights to inputs without weights and masks by id if requested.

The generator stream is augmented in the following way:

	If the stream consists of pairs (inputs, targets), a loss mask is added
that is creates as a tensor of ones of the same shape as targets.

	If id_to_mask is not None, and the stream (after the previous point)
has triples (inputs, targets, weights), the weights are multiplied by a
0/1 mask that is 0 iff targets is equal to id_to_mask (1 otherwise).

	Parameters

	
	generator – Stream of tuples.

	id_to_mask – If not None, int-valued id that represents padding, as opposed
to true target IDs.

	Yields

	Examples from the augmented stream.

	
trax.data.inputs.generate_random_noise_mask(noise_density=0.15, mean_noise_span_length=3.0, seed1=None, seed2=None)

	Returns a function that generates a random noise mask.

	
trax.data.inputs.consume_noise_mask(vocab_size=32100)

	Consumes (tokens, noise mask) and returns (inputs, targets).

	
trax.data.inputs.generate_sequential_chunks(max_length=None)

	Returns a function that generates chunks of atmost max_length length.

	
trax.data.inputs.addition_input_stream(vocab_size=<sphinx.ext.autodoc.importer._MockObject object>, batch_size=<sphinx.ext.autodoc.importer._MockObject object>, min_length=<sphinx.ext.autodoc.importer._MockObject object>, max_length=<sphinx.ext.autodoc.importer._MockObject object>, pad_to_multiple=32, encdec=False)

	Data stream for the add problem: <S>x+y<S>(x+y).

	Parameters

	
	vocab_size – how many symbols to use.

	batch_size – how large are the batches.

	min_length – minimal length of w.

	max_length – maximal length of w.

	pad_to_multiple – int, pad length to be multiple of this number.

	encdec – bool, if True return encoder-decoder style inputs (default: False)

	Returns

	python generator of tuples of data examples

	
trax.data.inputs.random_spans_noise_mask(length, noise_density=0.15, mean_noise_span_length=3.0, seed1=None, seed2=None, example=None)

	Computes span corruption masks given input parameters.

	
trax.data.inputs.lower_endian_to_number(l, base)

	Helper function: convert a list of digits in the given base to a number.

	
trax.data.inputs.number_to_lower_endian(n, base)

	Helper function: convert a number to a list of digits in the given base.

	
trax.data.inputs.random_number_lower_endian(length, base)

	Helper function: generate a random number as a lower-endian digits list.

	
trax.data.inputs.count_and_skip(generator, name)

	Count the number of items in the generator, skip already counted ones.

This function counts the number of processed examples and puts it into
the global variable counters. This variable can be saved and restored,
and if restored, this function will skip examples until the restored counter
is reached. When the data generator is deterministic, this allows to restore
the data reading process from a checkpoint.

	Parameters

	
	generator – generator for examples in the dataset.

	name – string, a unique id that we use to count the examples

	Yields

	The examples from generator but first skip the number specified in the
global variable counters[name] and next increment this variable every
time a new example appears.

	
trax.data.inputs.save_data_counters(output_dir, host_id=None)

	Checkpoint data counters.

	
trax.data.inputs.load_data_counters(output_dir, host_id=None)

	Checkpoint data counters.

	
class trax.data.inputs.Inputs(train_stream, eval_stream=None, train_eval_stream=None)

	Bases: object

Inputs bundle.

Inputs bundle holds input streams and shapes for a training run.
It contains stream-creating functions that return python generators
of (input_batch, target_batch) tuples.

	
	train_stream: training data that will be used for training

	may include all the augmentation or selection the training wants
the shape of examples is [batch_fn.batch_size, …]

	
	train_eval_stream: training data used for evaluation

	examples from training data but usually without augmentation
the shape of examples is [batch_fn.eval_batch_size, …]

	
	eval_stream: evaluation data stream

	examples from evaluation data, usually without augmentation
the shape of examples is [batch_fn.eval_batch_size, …]

	
	input_shape: the shape of inputs

	the […] above, without batch size

	input_dtype: the data type of inputs

	
	target_shape: the shape of targets

	the […] above, without batch size

	target_dtype: the data type of targets

	
__init__(train_stream, eval_stream=None, train_eval_stream=None)

	Initialize a new set of inputs.

	Parameters

	
	train_stream – a function taking n_devices (an int) and returning
a python generator of training batches.

	eval_stream – a function taking n_devices (an int) and returning
a python generator of validation batches;
if None, then the training generator will be used for evaluation.

	train_eval_stream – a function taking n_devices (an int) and returning
a python generator of batches from
the training set used for evaluation (if None, use train_stream).

	
train_stream(n_devices)

	

	
eval_stream(n_devices)

	

	
train_eval_stream(n_devices)

	

	
input_shape

	Example input shape, without batch dimension.

	
target_shape

	Example target shape, without batch dimension.

	
input_dtype

	Dtype of the input.

	
target_dtype

	Dtype of the target.

	
example_shape_dtype

	Shape and Dtype of an example batch.

	
trax.data.inputs.make_inputs(train_stream=<sphinx.ext.autodoc.importer._MockObject object>, eval_stream=None)

	Create Inputs from two streams; mostly for use in gin configs.

	
trax.data.inputs.make_additional_stream(stream=<sphinx.ext.autodoc.importer._MockObject object>)

	Create a stream mostly for use in gin configs for additional tasks.

	
trax.data.inputs.make_parallel_stream(streams=<sphinx.ext.autodoc.importer._MockObject object>, counters=None)

	Create a parallel stream for use in gin configs for additional tasks.

	
trax.data.inputs.batcher(data_streams=<sphinx.ext.autodoc.importer._MockObject object>, variable_shapes=True, batch_size_per_device=32, batch_size=None, eval_batch_size=32, bucket_length=32, buckets=None, buckets_include_inputs_in_length=False, batch_shuffle_size=None, max_eval_length=None, id_to_mask=None, strict_pad_on_len=False)

	Batcher: create trax Inputs from single-example data-streams.

	
trax.data.inputs.batch_fn(dataset, training, n_devices, variable_shapes, batch_size_per_device=32, batch_size=None, eval_batch_size=32, bucket_length=32, buckets=None, buckets_include_inputs_in_length=False, batch_shuffle_size=None, max_eval_length=None, id_to_mask=None, strict_pad_on_len=False)

	Batching function.

	
trax.data.inputs.random_inputs(input_shape=<sphinx.ext.autodoc.importer._MockObject object>, input_dtype=<sphinx.ext.autodoc.importer._MockObject object>, input_range=(0, 255), output_shape=<sphinx.ext.autodoc.importer._MockObject object>, output_dtype=<sphinx.ext.autodoc.importer._MockObject object>, output_range=(0, 9))

	Make random Inputs for debugging.

	Parameters

	
	input_shape – the shape of inputs (including batch dimension).

	input_dtype – the type of the inputs (int32 by default).

	input_range – the range of inputs (defaults to (0, 255)).

	output_shape – the shape of outputs (including batch dimension).

	output_dtype – the type of the outputs (int32 by default).

	output_range – the range of outputs (defaults to (0, 9)).

	Returns

	trax.inputs.Inputs

	
trax.data.inputs.sequence_copy_inputs(vocab_size=<sphinx.ext.autodoc.importer._MockObject object>, batch_size=<sphinx.ext.autodoc.importer._MockObject object>, train_length=<sphinx.ext.autodoc.importer._MockObject object>, eval_min_length=<sphinx.ext.autodoc.importer._MockObject object>, eval_max_length=<sphinx.ext.autodoc.importer._MockObject object>, reverse=False, pad_to_multiple=32)

	Inputs for the sequence copy problem: 0w0w for w in [1..vocab_size-1]*.

	Parameters

	
	vocab_size – how many symbols to use.

	batch_size – how large are the batches.

	train_length – maximum length of w for training.

	eval_min_length – minimum length of w for eval.

	eval_max_length – maximum length of w for eval.

	reverse – bool (optional, false by default): reverse the second sequence.

	pad_to_multiple – int, pad length to be multiple of this number.

	Returns

	trax.inputs.Inputs

	
trax.data.inputs.simple_sequence_copy_inputs(vocab_size=<sphinx.ext.autodoc.importer._MockObject object>, batch_size=<sphinx.ext.autodoc.importer._MockObject object>, train_length=<sphinx.ext.autodoc.importer._MockObject object>, eval_min_length=<sphinx.ext.autodoc.importer._MockObject object>, eval_max_length=<sphinx.ext.autodoc.importer._MockObject object>, pad_to_multiple=32)

	Inputs for the sequence copy problem: w for w in [1..vocab_size-1]*.

	Parameters

	
	vocab_size – how many symbols to use.

	batch_size – how large are the batches.

	train_length – maximum length of w for training.

	eval_min_length – minimum length of w for eval.

	eval_max_length – maximum length of w for eval.

	pad_to_multiple – int, pad length to be multiple of this number.

	Returns

	trax.inputs.Inputs

	
trax.data.inputs.addition_inputs(vocab_size=<sphinx.ext.autodoc.importer._MockObject object>, batch_size=<sphinx.ext.autodoc.importer._MockObject object>, train_length=<sphinx.ext.autodoc.importer._MockObject object>, eval_min_length=<sphinx.ext.autodoc.importer._MockObject object>, eval_max_length=<sphinx.ext.autodoc.importer._MockObject object>, pad_to_multiple=32, encdec=False)

	Inputs for the add problem: <S>x+y<S>(x+y).

	Parameters

	
	vocab_size – how many symbols to use.

	batch_size – how large are the batches.

	train_length – maximal length of w for training.

	eval_min_length – minimal length of w for eval.

	eval_max_length – maximal length of w for eval.

	pad_to_multiple – int, pad length to be multiple of this number.

	encdec – bool, if True return encoder-decoder style inputs (default: False)

	Returns

	trax.inputs.Inputs

	
trax.data.inputs.sine_inputs(batch_size=<sphinx.ext.autodoc.importer._MockObject object>, length=<sphinx.ext.autodoc.importer._MockObject object>, max_phase=6.283185307179586, min_period=0.1, max_period=10.0)

	Sinusoids of random period and phase.

	Parameters

	
	batch_size (int) – Number of examples in a batch.

	length (int) – Length of each sequence.

	max_phase (float) – Maximum phase of the sinusoids.

	min_period (float) – Minimum period of the sinusoids.

	max_period (float) – Maximum period of the sinusoids.

	Returns

	trax.inputs.Inputs

tf_inputs

TensorFlow data sources and associated prepocessing functions.

	
trax.data.tf_inputs.no_preprocess(dataset, training)

	

	
trax.data.tf_inputs.t2t_problems()

	

	
trax.data.tf_inputs.data_streams(dataset_name, data_dir=None, preprocess_fn=<function no_preprocess>, bare_preprocess_fn=None, shuffle_buffer_size=1024, eval_holdout_size=0, input_name=None, target_name=None)

	Creates (train, eval) data sources from dataset_name.

	Parameters

	
	dataset_name – Name of dataset belonging to TFDS or T2T. T2T dataset names
must start with 't2t_'.

	data_dir – Directory where the data is located.

	preprocess_fn – Function to use for pre-processing after appending targets to
inputs.

	bare_preprocess_fn – Function to use for pre-processing before appending
targets to inputs.

	shuffle_buffer_size – Size of the shuffle buffer.

	eval_holdout_size – If greater than 0, specifies a fraction of training data
to siphon off and use as eval data, in place of an separate eval split.

	input_name – Name of the inputs from the dictionary.

	target_name – Name of the outputs either from the dictionary or as a result
of post-processing.

	Returns

	A pair of functions, (f, g) for use as data sources; call f() to get an
iterator of training data samples, and call g() to get an iterator of eval
data samples.

	
trax.data.tf_inputs.dataset_to_stream(dataset, input_name)

	Takes a tf.Dataset and creates a numpy stream of ready batches.

	
trax.data.tf_inputs.TFDS(dataset_name, data_dir=None, tfds_preprocess_fn=None, keys=None, train=True, use_alt_eval=False, shuffle_train=True, host_id=None, n_hosts=None, eval_holdout_size=0)

	Creates a data source from TensorFlow dataset dataset_name.

	Parameters

	
	dataset_name – Name of the dataset, as registered in TensorFlow datasets
(e.g., 'glue/mnli').

	data_dir – Directory where the data is located.

	tfds_preprocess_fn – If specified, function that applies to items in raw
dataset (before selecting specific features).

	keys – Tuple of dataset-specific strings that select features from the
dataset.

	train – If True, select the training split from the dataset; else select an
eval split.

	use_alt_eval – If True, and if train is False, select the dataset’s
alternate eval split if it has one (or fall back to the dataset’s only
eval split). This currently affects only the glue/mnli dataset.

	shuffle_train – If True, have TensorFlow pre-shuffle the training data; else
receive training data in deterministic sequence.

	host_id – Integer id used for tracking data subsplits, in cases where
n_hosts > 1.

	n_hosts – If greater than 1, prepare data subsplits for the given number of
hosts.

	eval_holdout_size – If greater than 0, specifies a fraction of training data
to siphon off and use as eval data, in place of an separate eval split.

	Returns

	A function f for use as a training or eval data source; call f() to get
an iterator of data samples.

	
trax.data.tf_inputs.tokenize(stream, keys=None, vocab_type='subword', vocab_file=None, vocab_dir=None, n_reserved_ids=0)

	Tokenize examples from the stream.

This function assumes that stream generates either strings or tuples/dicts
containing strings at some keys. This function maps these strings to
numpy arrays of integers – the tokenized version of each string.

	Parameters

	
	stream – A python generator yielding strings, tuples or dicts.

	keys – which keys of the tuple/dict to tokenize (by default: all)

	vocab_type – Type of vocabulary, one of: ‘subword’, ‘sentencepiece’, ‘char’.

	vocab_file – Name of the vocabulary file.

	vocab_dir – Directory which contains the vocabulary file.

	n_reserved_ids – An int, offset added so 0, …, n_reserved_ids-1 are unused;
This is common for example when reserving the 0 for padding and 1 for EOS,
but it’s only needed if these symbols are not already included (and thus
reserved) in the vocab_file.

	Yields

	Examples from stream with strings at keys replaced by np.arrays of
integers – the tokenized version of these strings.

	
trax.data.tf_inputs.Tokenize(keys=None, vocab_type='subword', vocab_file=None, vocab_dir=None, n_reserved_ids=0)

	Returns a function that maps text to integer arrays; see tokenize.

	
trax.data.tf_inputs.detokenize(x, vocab_type='subword', vocab_file=None, vocab_dir=None, n_reserved_ids=0)

	Maps integer arrays to text; the opposite of tokenize.

In many cases (all char- and subword-type vocabularies and most sentencepiece
ones) the tokenization is invertible, so detokenize(tokenize(x)) = x. In some
more rare cases this can remove some spacing, but it is still often useful
to run detokenize to get a readable version for a tokenized string.

	Parameters

	
	x – a list or numpy array of integers.

	vocab_type – Type of vocabulary, one of: ‘subword’, ‘sentencepiece’, ‘char’.

	vocab_file – Name of the vocabulary file.

	vocab_dir – Directory which contains the vocabulary file.

	n_reserved_ids – An int, offset added so 0, …, n_reserved_ids-1 are unused;
This is common for example when reserving the 0 for padding and 1 for EOS,
but it’s only needed if these symbols are not already included (and thus
reserved) in the vocab_file.

	Returns

	A string corresponding to the de-tokenized version of x.

	
trax.data.tf_inputs.ConvertToUnicode(keys=None)

	Converts to Unicode UTF-8 elements of an example.

Useful for when TFDS outputs byte arrays. All of the errors of the conversion
are ignored.

	Parameters

	keys – tuple/list of example dimensions to convert.

	Returns

	Function converting chosen elements of an example to UTF-8.

	
trax.data.tf_inputs.vocab_size(vocab_type='subword', vocab_file=None, vocab_dir=None, n_reserved_ids=0)

	Returns the size of the vocabulary (number of symbols used).

This function can be used to set the size of the final layers of a model that
needs to predict symbols from a given vocabulary. More precisely, if this
function returns N then the last layer size should be set to at least N (it
can be more). Note that this function does take reserved IDs into account.

	Parameters

	
	vocab_type – Type of vocabulary, one of: ‘subword’, ‘sentencepiece’, ‘char’.

	vocab_file – Name of the vocabulary file.

	vocab_dir – Directory which contains the vocabulary file.

	n_reserved_ids – An int, offset added so 0, …, n_reserved_ids-1 are unused.

	Returns

	An integer, the number of symbols used (including reserved IDs).

	
trax.data.tf_inputs.cifar10_no_augmentation_preprocess(dataset, training)

	

	
trax.data.tf_inputs.cifar10_augmentation_preprocess(dataset, training)

	Preprocessing for cifar10 with augmentation (see below).

	
trax.data.tf_inputs.cifar10_augmentation_flatten_preprocess(dataset, training, predict_image_train_weight=0.01)

	Preprocessing for cifar10 that flattens it and appends targets.

	
trax.data.tf_inputs.downsampled_imagenet_flatten_bare_preprocess(dataset, training)

	Preprocessing for downsampled_imagenet.

	Parameters

	
	dataset – the dataset.

	training – unused option.

	Returns

	Flattened dataset.

Preprocessing for downsampled_imagenet 32x32 and 64x64 generation from
http://arxiv.org/abs/1601.06759 (page 8).

	
trax.data.tf_inputs.concat_preprocess(dataset, training, pad_symbol=0)

	Pre-processing function that concatenates input and target for LM.

	
trax.data.tf_inputs.squeeze_targets_preprocess(dataset, training)

	Pre-processing function that squeezes last axis of targets.

	
trax.data.tf_inputs.lm1b_preprocess(dataset, training, max_target_length=-1, max_eval_target_length=-1)

	Preprocessing for LM1B: filter out targets exceeding maximum length.

	
trax.data.tf_inputs.wmt_preprocess(dataset, training, max_length=-1, max_eval_length=-1)

	Preprocessing for LM1B: filter out targets exceeding maximum length.

	
trax.data.tf_inputs.wmt_concat_preprocess(dataset, training, max_length=-1, max_eval_length=-1)

	Preprocessing for WMT: filter exceeding maximum length and concatenate.

	
trax.data.tf_inputs.lm_token_preprocessing(dataset, training)

	Concatenates inputs, 0, targets, with masking only for targets.

	
trax.data.tf_inputs.bair_robot_pushing_hparams(hparams=None, video_num_input_frames=1, video_num_target_frames=15)

	

	
trax.data.tf_inputs.bair_robot_pushing_preprocess(dataset, training)

	Pre-processing function that concatenates input and target frames.

	
trax.data.tf_inputs.sentencepiece_tokenize(stream, spm_path=None, extra_ids=0)

	Sentencepiece tokenization.

	
trax.data.tf_inputs.SentencePieceTokenize(spm_path=None, extra_ids=0)

	Returns a function that maps text to integer arrays.

	
trax.data.tf_inputs.c4_preprocess(dataset, training, max_target_length=-1, tokenization=None, spm_path=None)

	Pre-processing function for C4 dataset.

	
trax.data.tf_inputs.c4_bare_preprocess_fn(dataset, training=True, spm_path=None, copy_pretokenized=True, sequence_length=None)

	Returns a dataset that contains ‘inputs’ and ‘targets’ from C4.

	
trax.data.tf_inputs.filter_dataset_on_len(dataset, training, len_map=None, filter_on_eval=False)

	Filters a dataset of lengths given in len_map.

	Parameters

	
	dataset – tf.data.Dataset the dataset to filter.

	training – bool, true if we are in training mode.

	len_map – optional dict of str to (int, int). We filter examples where a
feature’s size is beyond the specified bounds. Ex:
{‘inputs’: (1, 512), ‘targets’: (64, 128)} will keep only those examples

where 1 <= len(inputs) <= 512 and 64 <= len(targets) <= 128.

	filter_on_eval – bool if true, we will filter in eval mode also.

	Returns

	a filtered tf.data.Dataset.

	
trax.data.tf_inputs.truncate_dataset_on_len(dataset, training, len_map=None, truncate_on_eval=False)

	Truncates features in an example to lengths given in len_map.

	Parameters

	
	dataset – tf.data.Dataset the dataset to filter.

	training – bool, true if we are in training mode.

	len_map – optional dict of str to int, we truncate examples where a feature’s
size is beyond the max. Ex: {‘inputs’: 512, ‘targets’: 64} will truncate

examples to be within those bounds.

	truncate_on_eval – bool if true, we will truncate in eval mode also.

	Returns

	a filtered tf.data.Dataset.

	
trax.data.tf_inputs.pad_dataset_to_length(dataset, training, len_map=None)

	Pad features less than specified length to specified length.

	
trax.data.tf_inputs.add_eos_to_output_features(dataset, training, output_features='targets', eos=1)

	Adds EOS to all features in output_features.

	
trax.data.tf_inputs.generic_text_dataset_preprocess_fn(dataset, training=True, text_preprocess_fns=None, token_preprocess_fns=None, spm_path=None, copy_pretokenized=False, debug_print_examples=False, debug_print_examples_rate=0.01)

	Pre-processes, tokenizes and post-processes a tf.data.Dataset.

	Parameters

	
	dataset – tf.data.Dataset to process.

	training – boolean, set to True if training, False otherwise.

	text_preprocess_fns – None or list of callables: tf.data.Dataset, bool ->
tf.data.Dataset this operates before tokenization. Typically used to
select which fields we want to learn over or change something into “text
to text” form.

	token_preprocess_fns – None or list of callables: tf.data.Dataset, bool ->
tf.data.Dataset, this operates after tokenization. Since this can view
the tokenized fields, this can be used to filter on length etc.

	spm_path – None or str, path to a sentencepiece model to use for tokenization
by default uses the 32k vocabulary from T5.

	copy_pretokenized – bool, if True retains the original fields after
tokenization.

	debug_print_examples – bool, if True this prints examples to the logging
stream for inspection, both before and after tokenization.

	debug_print_examples_rate – float, [0, 1.0], on average this fraction of
dataset examples will be printed out in each phase i.e. pre and post
tokenization.

	Returns

	a tf.data.Dataset with all the preprocessing and tokenization performed.

	
trax.data.tf_inputs.get_t5_preprocessor_by_name(name=None, fn_kwargs=None)

	Returns a closure of any T5 preprocessor function with its arguments.

The main use-case is to use this (with gin scopes) to make any preprocessor
function available in a gin file to configure and use.

See: TFInputs.test_gin_configurable_preprocessors

	Parameters

	
	name – str, name of the preprocessor function to configure.

	fn_kwargs – optional dictionary, the arguments to configure, these will be
partially applied to the function given by name.

	Returns

	a closure of the preprocessor function along with its arguments, this
function takes two arguments only, dataset and boolean training and ignores
the training and calls the t5 processor with the dataset (and closed over
arguments only).

	
trax.data.tf_inputs.download_and_prepare(dataset_name, data_dir)

	Downloads and prepares T2T or TFDS dataset.

	Parameters

	
	dataset_name – tfds dataset or t2t problem name prefixed by ‘t2t_’.

	data_dir – location of existing dataset or None.

	Returns

	path string of downloaded data.

	Return type

	data_dir

	
trax.data.tf_inputs.BertSingleSentenceInputs(batch, labeled=True, cls_id=101, sep_id=102)

	Prepares inputs for BERT: add [SEP], [CLS] and create embeddings.

	
trax.data.tf_inputs.BertDoubleSentenceInputs(batch, labeled=True, cls_id=101, sep_id=102)

	Prepares inputs for BERT models by adding [SEP] and [CLS] tokens and creating segment embeddings.

	
trax.data.tf_inputs.CreateBertInputs(double_sentence=True, labeled=True, cls_id=101, sep_id=102)

	

	
trax.data.tf_inputs.mask_random_tokens(batch, explicit_vocab_size=30522, masking_prob=0.15, cls_id=101, sep_id=102, mask_id=103, vocab_start_id=999)

	Prepares input for the masking task.

Preparation consist in masking masking_prob percentage of non-special tokens
at each input row; round(masking_prob * num_nonspecial_tokens) random tokens
are selected out of which each token is either
- replaced with [MASK] token with 80% probability,
- replaced with random token with 10% probability,
- or unchanged with 10%.
The implentation is based on
https://github.com/google-research/bert/blob/master/create_pretraining_data.py#L342

Examples:
- batch is a stream with each row having tuple (token_ids,). Function yields
rows of form (modified_token_ids, original_tokens, token_weights), where
modified_token_ids have [MASK] tokens or random tokens according to the
procedure described above.
- batch is a stream with each row having tuple (token_ids, segment_embeddings,
nsp_label, nsp_weight).Function yields rows of form (modified_token_ids,
segment_embeddings, nsp_label, nsp_weight, original_tokens, token_weights).

	Parameters

	
	batch – stream of inputs. Each row in the stream is a tuple which first
element is an array of tokens

	explicit_vocab_size – the total size of the vocabulary.

	masking_prob – Determines percent of non-special tokens to be selected for
masking.

	cls_id – id of the special CLS token.

	sep_id – id of the special SEP token.

	mask_id – id of the special MASK token.

	vocab_start_id – id of first non-special token in the vocabulary.

	Yields

	a stream with tokens masked for MLM training and 2 appended arrays – - original tokens: a copy of original tokens used as a label for mlm
training
- token_weights: weights distributed uniformly over selected tokens (sum
is 1). Other tokens have 0 weight.

	
trax.data.tf_inputs.BertNextSentencePredictionInputs(dataset_name, data_dir=None, text_key='text', train=True, shuffle_size=50000)

	Defines a stream for the next sentence prediction task.

	
trax.data.tf_inputs.CorpusToRandomChunks(dataset_name, num_tokens=512, train=True)

	

	
trax.data.tf_inputs.BertGlueTrainStream(benchmark=<sphinx.ext.autodoc.importer._MockObject object>)

	Returns a Bert-preprocessed training stream for benchmark.

	Parameters

	benchmark – Simple lower-case name of a GLUE benchmark, e.g., 'cola',
'mnli', 'rte'.

	
trax.data.tf_inputs.BertGlueEvalStream(benchmark=<sphinx.ext.autodoc.importer._MockObject object>)

	Returns a Bert-preprocessed eval data stream for benchmark.

	Parameters

	benchmark – Simple lower-case name of a GLUE benchmark, e.g., 'cola',
'mnli', 'rte'. If the benchmark includes an alternate
eval (e.g., MNLI’s “mismatched” eval/validation split), you can
specify it with an '_e2' suffix, e.g., 'mnli_e2'.

	
trax.data.tf_inputs.T5GlueTrainStream(benchmark=<sphinx.ext.autodoc.importer._MockObject object>)

	Returns a T5-preprocessed training data stream for benchmark.

	Parameters

	benchmark – Simple lower-case name of a GLUE benchmark, e.g., 'cola',
'mnli', 'rte'.

	
trax.data.tf_inputs.T5GlueTrainStreamsParallel(benchmark_list=<sphinx.ext.autodoc.importer._MockObject object>, counters=None, reweight_by_minimum=False, gradually_reweight=False)

	Returns a parallel set of training streams, based on benchmark_list.

	Parameters

	
	benchmark_list – List of simple lower-case names of GLUE benchmarks, e.g.,
'cola', 'mnli', 'rte'.

	counters – a list of counters to be passed to data.Parallel, e.g.,

	392702, 2490] would be a reasonable counterpart to ([8551,) –

	= ["cola", "mnli", "rte"], see (benchmark_list) –

	https – //github.com/google-research/text-to-text-transfer-transformer/blob/master/t5/data/glue_utils.py#L42

	more details on counters. (for) –

	reweight_by_minimum – divide by the minimal counter.

	gradually_reweight – a more refined reweighting policy, see inputs.py
for more details.

	
trax.data.tf_inputs.T5GlueEvalStream(benchmark=<sphinx.ext.autodoc.importer._MockObject object>)

	Returns a T5-preprocessed eval data stream for benchmark.

	Parameters

	benchmark – Simple lower-case name of a GLUE benchmark, e.g., 'cola',
'mnli', 'rte'. If the benchmark includes an alternate
eval (e.g., MNLI’s “mismatched” eval/validation split), you can
specify it with an '_e2' suffix, e.g., 'mnli_e2'.

	
trax.data.tf_inputs.T5GlueEvalStreamsParallel(benchmark_list=<sphinx.ext.autodoc.importer._MockObject object>)

	Returns a parallel set of T5 eval streams, based on benchmark_list.

	Parameters

	benchmark_list – List of strings, each of which is a simple lower-case name
of a GLUE benchmark, e.g., 'cola', 'mnli', 'rte'. If a
benchmark includes an alternate eval (e.g., MNLI’s “mismatched”
eval/validation split), you can specify it with an '_e2' suffix,
e.g., 'mnli_e2'.

	
trax.data.tf_inputs.T5GlueEvalTasks(benchmark_list=<sphinx.ext.autodoc.importer._MockObject object>)

	Returns a list of T5 GLUE eval tasks, based on benchmark_list.

	Parameters

	benchmark_list – List of strings, each of which indicates the name and
data split of a GLUE benchmark. Data splits are indicated as underscore
suffixes, e.g., 'cola_t' (Cola benchmark, training split),
'rte_e' (RTE benchmark, eval/validation split), and 'mnli_e2'
(MNLI alternate “mismatched” eval/validation split).

	
trax.data.tf_inputs.compute_single_result(op_name, num_args)

	An implementation of the most popular ops from the MathQA dataset.

	
trax.data.tf_inputs.compute_result(list_op, list_num)

	Python execution of MathQA ops.

	
trax.data.tf_inputs.single_op_to_python_command(op_name, num_args)

	An implementation of the most popular ops from the MathQA dataset.

	
trax.data.tf_inputs.compute_program(list_op)

	Python execution of MathQA ops.

	
trax.data.tf_inputs.compute_nums(question)

	Finds numbers in a string and convert them to floats.

	
trax.data.tf_inputs.compute_ops(linear_formula)

	

	
trax.data.tf_inputs.process_single_mathqa_example(example)

	Execute a single example and verify coherence of a MathQA problem.

	Parameters

	example – a dictionary with the following fields: Problem - a natural
language formulation of the problem Rationale - a natural language
solution of the problem options - five possible answers (a) b) c) d) and
e)) correct - the letter representing the correct answer
annotated_formula - formula representing the full solution linear_formula
- a string of operations separated by the | character, e.g.
multiply(n2,const_100)|multiply(n0,n1)|divide(#0,#1)|
multiply(#2,const_100)|divide(#3,#1)| category - a natural language
description of the category to which a given problem belongs.

	Returns

	numerical answer contained in the example
python_result: numerical answers computed in Python, including intermediate

results. The answer_num should be close python_result[-1]

list_op: list of arithmetic operations
list_num: list of identified numbers in the text

	Return type

	answer_num

	
trax.data.tf_inputs.convert_float_to_mathqa(number)

	

	
trax.data.tf_inputs.convert_to_subtract(const_string)

	

	
trax.data.tf_inputs.CreateMathQAInputs(dataset_path=None, train=True, tolerance=0.01, cumulative=True, python_code=False, partial_results=True, nlp_rationale=False, correct_answer=False, answer_in_mathqa_format=True, correct_answer_given_reasoning=False, category=False, order_prediction=False, reduced_operation_name=True, qed=False)

	Prepares MathQA inputs.

The generation procedure leaves a lot parameters to be set by the user.
Currently we support only correct examples in the following sense:
python execution agrees with the declared answer up to 1%.

According to this criterion wrong examples such as
problem: calculate 85184 ÷ ? = 352
operations [‘multiply(n0,n1)’]
are ignored (this should be divide(n0,n1) in this case).

	Parameters

	
	dataset_path – a path with the MathQA dataset.

	train – if True, then generate training examples, otherwhise generate
validation examples (the dataset has also a test set).

	tolerance – if for a given example relative difference between Python result
and the result declared in the dataset exceeds the level, then the example
is dropped; tolerances ranging from 0.1 to 0.001 yield from 18K to 21K
examples.

	cumulative – if set to True, then generate examples in the format input -
problem + numbers + op1 + op2 + op3 target - op4 If set to False, then
examples are in the format input - problem + numbers target - all
operations.

	python_code – if set to True, then generates python code instead of
MathQA commands.

	partial_results – if set to True, then partial results will be reported as
part of the input, e.g. input - problem + numbers + op1 + #1 + op2 + #2 +
op3 + #3, target - op4, where #k is the partial results from operation
opk. Activated only in cumulative set to True.

	nlp_rationale – if set to True, then input is the problem and the target is
the nlp rationale.

	correct_answer – if set to True, then input is the problem plus all possible
answers and the target is the correct answer.

	answer_in_mathqa_format – if set to True, then convert numerical answer to
the MathQA format and wrap it in the subtract operation.
E.g. “3.13” is converted to “subtract(const_3_13,const_0)”.

	correct_answer_given_reasoning – if set to True, then input is the problem
plus linear formula plus all possible answers and the target is the
correct answer.

	category – if set to True, then input is the problem and the target is its
category.

	order_prediction – if set to True, then input is the problem and a list of
all operations; with probability 0.5 two operations are swapped; the task
consists in detecting whether the operations were swapped. See the
order prediction task in CreateAquaInputs in this file.

	reduced_operation_name – If set to True, then in order prediction consider
only the operation token without parameterers.

	qed – if set to True, then the reasoning is finished with an additional
operation qed.

	Returns

	a generator of MathQA examples; the generator yields
non-tokenized examples - they can be further processed using for example
the tokenize function from this module

	Return type

	mathqa_yield_examples

	
trax.data.tf_inputs.CreateAquaInputs(dataset_path=None, train=True, cumulative=False, rationale=False, correct_answer=False, correct_answer_given_reasoning=False, partial_reasoning=True, order_prediction=False)

	Prepares Aqua inputs.

	Parameters

	
	dataset_path – a path with the Aqua dataset.

	train – if True, then generate training examples, otherwhise generate
validation examples (the dataset has also a test set).

	cumulative – if set to True, then generate examples in the format input -
problem + step1 + step3 + step3 target - step4 If set to False, then
examples are in the format input - problem, target - all operations.

	rationale – if set to True, then input is the problem and the target is the
rationale.

	correct_answer – if set to True, then input is the problem plus all possible
answers and the target is the correct answer.

	correct_answer_given_reasoning – if set to True, then input is the problem
plus reasoning (aka rationale) plus all possible answers and the target is
the correct answer.

	partial_reasoning – an additional option related to
correct_answer_given_reasoning; if set to True, then we take a random
prefix of the reasoning.

	order_prediction – if set to True, then input is the problem and a list of
all operations; with probability 0.5 two operations are swapped; the task
consists in detecting whether the operations were swapped. A similar
additional task was considered in https://arxiv.org/pdf/1909.11942.pdf and

in a recent work of Piotr Piękos, henrykm@ and mateuszm@.

	Returns

	a generator of Aqua examples; the generator yields
non-tokenized examples - they can be further processed using for example
the tokenize function from this module

	Return type

	aqua_yield_examples

	
trax.data.tf_inputs.CreateDropInputs(train=True, mathqa_format=False)

	Prepares Drop inputs.

	Parameters

	
	train – if True, then generate training examples, otherwhise generate
validation examples (the dataset has also a test set).

	mathqa_format – if True, then floats in targets are converted to the
the MathQA convention and wrapped in the subtract operation.
E.g. “3.13” is converted to “subtract(const_3_13,const_0)”.

	Returns

	a generator of Drop examples; the generator yields
non-tokenized examples - they can be further processed using for example
the tokenize function from this module

	Return type

	drop_yield_examples

	
trax.data.tf_inputs.CreateAnnotatedDropInputs(dataset_path=None, train=True, single_file=True, unique=False, total_number_of_samples=None, percentile=1.0)

	Prepares annotated Drop inputs.

Example of an annotated input which can be used with this interface:

	{

	‘passage’: ‘The Armenian Prelature of Cyprus was established in 973 by
Catholicos Khatchig I. Historically, the Prelature has been under the
jurisdiction of the Catholicosate of the Great House of Cilicia, while today
it is the oldest theme that falls under its jurisdiction. Since 2014 the
Prelate, a Catholicosal Vicar General, has been Archbishop Nareg Alemezian.
The parish priest in Nicosia is Fr. Momik Habeshian, while the parish priest
in Larnaca and Limassol is Fr. Mashdots Ashkarian. For centuries, the
Prelature building was located within the Armenian compound in Victoria
street in walled Nicosia; when that area was taken over by Turkish-Cypriot
extremists in 1963-1964, the Prelature was temporarily housed in Aram
Ouzounian street and, later on, in Kyriakos Matsis street in Ayios
Dhometios. Thanks to the efforts of Bishop Zareh Aznavorian and with
financial aid from the Evangelical Church of Westphalia, the new Prelature
building was erected in 1983, next to the Virgin Mary church and the Nareg
school in Nicosia, by architects Athos Dikaios & Alkis Dikaios; it was
officially inaugurated on 4 March 1984, during the pastoral visit of
Catholicos Karekin II. By initiative of Archbishop Varoujan Hergelian, in
1998 the basement of the building was renovated and the “Vahram Utidjian”
Hall was formed; previously a store room, it became a reality from the
proceeds of the auction in 1994 of the art collection that Vahram Utidjian
had donated to the Prelature in 1954. It was inaugurated on 3 February 1999
by Catholicos Aram I; numerous charity, communal and cultural events take
place there. The Prelature’s consistory houses a collection of
ecclesiastical relics, some of which were previously in the old Virgin Mary
church or the Magaravank.’,
‘question’: ‘How many years after the Vahram Utidjian was donated to the
Prelature was it sold at an auction?’,
‘answer’: 40,
‘calculation’: ‘subtract(n8,n9)’

}

In this example the calculation is formulated using the notation from the
MathQA dataset, but this is not required. subtract(n8,n9) means that the
answer 40 can be obtained through the substraction of the 9th and and the 10th
number in the input. The input consists of the passage concatened with the
question. The annotations can be generated using, for example, a method
from the paper https://arxiv.org/abs/1909.00109.

	Parameters

	
	dataset_path – a path with the Aqua dataset.

	train – if True, then generate training examples, otherwhise generate
validation examples (the dataset has also a test set).

	single_file – if True, then look just for one file. If False, read all
json files in a given directory and assume that each file contains one
example. Applied only to training data.

	unique – if set to True, then the generator will provide at most one question
per passage.

	total_number_of_samples – if set to a positive integer, then the total number
of unique samples will be bounded total_number_of_samples.

	percentile – the percentile of the train dataset used for training; default
set to 1., though setting to a lower value can be interesting when
combined train is combined with another source of data.

	Returns

	a generator of annotated Drop examples;
the generator yields non-tokenized examples - they can be further processed
using for example the tokenize function from this module.

	Return type

	drop_annotated_yield_examples

trax.optimizers

adafactor

Adafactor optimizer class.

	
class trax.optimizers.adafactor.Adafactor(learning_rate=0.05, factored=True, multiply_by_parameter_scale=True, do_clipping=True, do_momentum=False, momentum_in_bfloat16=False, beta1=0.0, decay_rate=0.8, clipping_threshold=1.0, weight_decay_rate=1e-05, weight_decay_n_steps=0, epsilon1=1e-16, epsilon2=0.001)

	Bases: trax.optimizers.base.Optimizer

Adafactor optimizer, as described in https://arxiv.org/abs/1804.04235.

	
__init__(learning_rate=0.05, factored=True, multiply_by_parameter_scale=True, do_clipping=True, do_momentum=False, momentum_in_bfloat16=False, beta1=0.0, decay_rate=0.8, clipping_threshold=1.0, weight_decay_rate=1e-05, weight_decay_n_steps=0, epsilon1=1e-16, epsilon2=0.001)

	Create the Adafactor optimizer.

Adafactor is described in https://arxiv.org/abs/1804.04235.

	Parameters

	
	learning_rate – float: trax-provided learning rate.

	factored – boolean: whether to use factored second-moment estimator for 2d
variables.

	multiply_by_parameter_scale – boolean: if True, then scale provided
learning_rate by parameter norm. if False, provided learning_rate is
absolute step size.

	do_clipping – whether to clip gradients; if True, set clipping_theshold.

	do_momentum – whether to use momentum; if True, set beta1.

	momentum_in_bfloat16 – if True, store momentum in bfloat16 to save memory.

	beta1 – a float value between 0 and 1, enables momentum and uses extra
memory if nonzero! Off by default.

	decay_rate – float: controls second-moment exponential decay schedule.

	clipping_threshold – an optional float >= 1, if None no update clipping.

	weight_decay_rate – rate at which to decay weights.

	weight_decay_n_steps – for how many steps to decay weights (always if None)

	epsilon1 – Regularization constant for squared gradient.

	epsilon2 – Regularization constant for parameter scale.

	
init(weights)

	Creates optimizer slots that fit the given weights.

	Parameters

	weights – Trainable weights for one layer. Optimizer slots typically match
the data shape and type of the given layer weights.

	
update(step, grads, weights, slots, opt_params)

	Computes updated layer weights and optimizer slots for one training step.

	Parameters

	
	step – Training step number.

	grads – Gradient values for this node (from back-propagation during a
training step).

	weights – Current weight values for this node (i.e., layer weights).

	slots – Current slot values for this node.

	opt_params – Optimizer hyperparameters (e.g. learning rate, momentum),
same across all nodes in the model.

	Returns

	Tuple of (new_weights, new_slots), which the Trax runtime will use to
update the model and optimizer within each training step.

adam

Adam optimizer class.

	
class trax.optimizers.adam.Adam(learning_rate=0.0001, weight_decay_rate=1e-05, b1=0.9, b2=0.999, eps=1e-05, clip_grad_norm=None)

	Bases: trax.optimizers.base.Optimizer

Adam optimizer; described in https://arxiv.org/abs/1412.6980.

The update rule for time step \(t\), given gradients \(g_t\) and
“Stepsize” \(\alpha\), is:

\[\begin{split}\hat{m}_t &\leftarrow \big(\beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t\big)\ /\ (1 - \beta_1^t) \\
\hat{v}_t &\leftarrow \big(\beta_2 \cdot m_{t-1} + (1 - \beta_2) \cdot g_t^2\big)\ /\ (1 - \beta_2^t) \\
\theta_t &\leftarrow \theta_{t-1} -\ \alpha \cdot \hat{m}_t / \big(\sqrt{\hat{v}_t} + \epsilon\big)\end{split}\]

	
__init__(learning_rate=0.0001, weight_decay_rate=1e-05, b1=0.9, b2=0.999, eps=1e-05, clip_grad_norm=None)

	Creates an Adam optimizer.

	Parameters

	
	learning_rate – Initial (unadapted) learning rate \(\alpha\); original
paper calls this Stepsize and suggests .001 as a generally good
value.

	weight_decay_rate – Fraction of prior weight values to subtract on each
step; equivalent to multiplying each weight element by
1 - weight_decay_rate. (This is not part of the core Adam
algorithm.)

	b1 – Exponential decay rate \(\beta_1\) for first moment estimates.

	b2 – Exponential decay rate \(\beta_2\) for second moment estimates.

	eps – Small positive constant \(\epsilon\) for numerical stability.

	clip_grad_norm – Threshold value above which gradient clipping occurs.
(This is not part of the core Adam algorithm.)

	
init(weights)

	Creates optimizer slots that fit the given weights.

	Parameters

	weights – Trainable weights for one layer. Optimizer slots typically match
the data shape and type of the given layer weights.

	
update(step, grads, weights, slots, opt_params)

	Computes updated layer weights and optimizer slots for one training step.

	Parameters

	
	step – Training step number.

	grads – Gradient values for this node (from back-propagation during a
training step).

	weights – Current weight values for this node (i.e., layer weights).

	slots – Current slot values for this node.

	opt_params – Optimizer hyperparameters (e.g. learning rate, momentum),
same across all nodes in the model.

	Returns

	Tuple of (new_weights, new_slots), which the Trax runtime will use to
update the model and optimizer within each training step.

base

Trax base optimizer class.

	
class trax.optimizers.base.Optimizer(learning_rate=0.01, clip_grad_norm=None, **init_opt_params)

	Bases: object

Base class for optimizers that work hand in hand with Trax layers.

To define an optimizer subclass, specify its behavior with respect to a
single node in the network (e.g., a single dense layer):

	
	init: how to create/initialize optimizer-internal parameters (“slots”),

	as a function of the node’s weights.

	
	update: how to use gradient information to update node weights and

	optimizer slots.

The Trax runtime combines these node-local computations into layer weight
updates and optimizer slot updates for the whole tree of layers in the model.

	
__init__(learning_rate=0.01, clip_grad_norm=None, **init_opt_params)

	Sets initial hyperparameter values for this optimizer.

Takes optimizer hyperparameters as keyword arguments. These values can
change over time (training steps), e.g., for learning rate schedules.

To expose subclass hyperparameters for gin configuration, override this
constructor and use explicitly named keyword arguments. See
momentum.Momentum.__init__ for one such example.

	Parameters

	
	learning_rate – Learning rate for the optimizer. This can change during
training by means of a training rate schedule.

	clip_grad_norm – If specified, this scalar value is used to limit gradient
size – all gradient elements in a training step are treated as if
they belonged to a single vector and then scaled back if needed so
that such a vector’s L2 norm does not exceed clip_grad_norm. If
None, no clipping happens.

	**init_opt_params – Initial values of any additional optimizer parameters.

	
init(weights)

	Creates optimizer slots that fit the given weights.

	Parameters

	weights – Trainable weights for one layer. Optimizer slots typically match
the data shape and type of the given layer weights.

	
update(step, grads, weights, slots, opt_params)

	Computes updated layer weights and optimizer slots for one training step.

	Parameters

	
	step – Training step number.

	grads – Gradient values for this node (from back-propagation during a
training step).

	weights – Current weight values for this node (i.e., layer weights).

	slots – Current slot values for this node.

	opt_params – Optimizer hyperparameters (e.g. learning rate, momentum),
same across all nodes in the model.

	Returns

	Tuple of (new_weights, new_slots), which the Trax runtime will use to
update the model and optimizer within each training step.

	
slots

	

	
opt_params

	

	
tree_init(weight_tree)

	Assembles node-local initializations into full-tree initialization.

	Parameters

	weight_tree – Weights for an entire model, in a tree that matches the
model’s layer structure.

	Returns

	Tuple (slots, opt_params), where slots are the initialized optimizer
slot values and opt_params are optimizer hyperparameters (e.g.,
learning rate, momentum).

	
tree_update(step, grad_tree, weight_tree, slots, opt_params, store_slots=True)

	Assembles node-local weight and slot updates for the full layer tree.

	Parameters

	
	step – Current step number in the training process.

	grad_tree – Gradients for the entire model, in a tree that matches the
model’s layer structure.

	weight_tree – Current weights for the entire model, in a tree that matches
the model’s layer structure.

	slots – Optimizer slots.

	opt_params – Optimizer hyperparameters (e.g. learning rate, momentum).

	store_slots – Boolean; if True, stores resulting slots in this object;
when set to False, this becomes a pure function.

	Returns

	Tuple (weights, slots), where weights are the optimizer-updated
weights for the whole model (in a tree matching the model’s layer
structure) and slots are the updated optimizer slot values.

	
class trax.optimizers.base.SGD(learning_rate=0.01, clip_grad_norm=None, **init_opt_params)

	Bases: trax.optimizers.base.Optimizer

Stochastic gradient descent (SGD) optimizer.

	
init(weights)

	Creates optimizer slots that fit the given weights.

	Parameters

	weights – Trainable weights for one layer. Optimizer slots typically match
the data shape and type of the given layer weights.

	
update(step, grads, weights, slots, opt_params)

	Computes updated layer weights and optimizer slots for one training step.

	Parameters

	
	step – Training step number.

	grads – Gradient values for this node (from back-propagation during a
training step).

	weights – Current weight values for this node (i.e., layer weights).

	slots – Current slot values for this node.

	opt_params – Optimizer hyperparameters (e.g. learning rate, momentum),
same across all nodes in the model.

	Returns

	Tuple of (new_weights, new_slots), which the Trax runtime will use to
update the model and optimizer within each training step.

	
trax.optimizers.base.l2_norm(tree)

	Returns an L2 norm computed over all elements of all tensors in tree.

	Parameters

	tree – Tree-structured collection of tensors, e.g., model weights matching
the model’s layer structure.

	Returns

	A scalar value computed as if all the tensors in tree were combined
and flattened into a single vector, and then the L2 norm of that vector
was calculated.

	
trax.optimizers.base.clip_grads(grad_tree, max_norm)

	Proportionally reduces each gradient value to respect an aggregate limit.

	Parameters

	
	grad_tree – Gradient values structured as a tree of tensors matching the
model’s layer structure.

	max_norm – The aggregate limit on gradient values. All gradient elements in
grad_tree are treated as if they belonged to a single vector and
that vector is shortened if needed so that its L2 norm does not exceed
clip_grad_norm.

	Returns

	A new tree of tensors matching the structure of grad_tree, but with
element values proportionally rescaled as needed to respect the max_norm
limit.

momentum

Nesterov momentum optimizer (also known as Nesterov Accelerated Gradient).

	
class trax.optimizers.momentum.Momentum(learning_rate=0.01, mass=0.9, weight_decay_rate=1e-05, nesterov=True)

	Bases: trax.optimizers.base.Optimizer

A momentum optimizer.

This class implements two variants of momentum stochastic gradient descent
(SGD): with and without the Nesterov correction. The implementation of the
Nesterov update is based on the concepts in Sutskever et al. (2013)
[http://jmlr.org/proceedings/papers/v28/sutskever13.pdf], reformulated in
Bengio et al. (2012) [https://arxiv.org/abs/1212.0901], to work well with
backpropagation (equations 6 and 7):

\[\begin{split}v_t &= \mu_{t-1}v_{t-1} - \epsilon_{t-1}\nabla f(\Theta_{t-1}) \\
\Theta_t &= \Theta_{t-1} - \mu_{t-1} v_{t-1} + \mu_t v_t + v_t\end{split}\]

where \(\mu_{t-1}\) is the momentum (decay) coefficient at time step
\(t-1\) and \(\epsilon_{t-1}\) is the learning rate at \(t-1\).

Note that the implementation below also includes a weight decay rate
(\(\alpha\)) on the parameters, independent of the Nesterov momentum.

	
__init__(learning_rate=0.01, mass=0.9, weight_decay_rate=1e-05, nesterov=True)

	Sets initial hyperparameter values for this optimizer.

Takes optimizer hyperparameters as keyword arguments. These values can
change over time (training steps), e.g., for learning rate schedules.

To expose subclass hyperparameters for gin configuration, override this
constructor and use explicitly named keyword arguments. See
momentum.Momentum.__init__ for one such example.

	Parameters

	
	learning_rate – Learning rate for the optimizer. This can change during
training by means of a training rate schedule.

	clip_grad_norm – If specified, this scalar value is used to limit gradient
size – all gradient elements in a training step are treated as if
they belonged to a single vector and then scaled back if needed so
that such a vector’s L2 norm does not exceed clip_grad_norm. If
None, no clipping happens.

	**init_opt_params – Initial values of any additional optimizer parameters.

	
init(weights)

	Creates optimizer slots that fit the given weights.

	Parameters

	weights – Trainable weights for one layer. Optimizer slots typically match
the data shape and type of the given layer weights.

	
update(step, grads, weights, velocity, opt_params)

	Computes updated layer weights and optimizer slots for one training step.

	Parameters

	
	step – Training step number.

	grads – Gradient values for this node (from back-propagation during a
training step).

	weights – Current weight values for this node (i.e., layer weights).

	slots – Current slot values for this node.

	opt_params – Optimizer hyperparameters (e.g. learning rate, momentum),
same across all nodes in the model.

	Returns

	Tuple of (new_weights, new_slots), which the Trax runtime will use to
update the model and optimizer within each training step.

rms_prop

RMSProp optimizer class.

	
class trax.optimizers.rms_prop.RMSProp(learning_rate=0.001, gamma=0.9, eps=1e-08, clip_grad_norm=None)

	Bases: trax.optimizers.base.Optimizer

RMSProp optimizer.

Uses optimizer weights (“slots”) to maintain a root-mean-square exponentially
decaying average of gradients from prior training batches.

	
__init__(learning_rate=0.001, gamma=0.9, eps=1e-08, clip_grad_norm=None)

	Sets initial hyperparameter values for this optimizer.

Takes optimizer hyperparameters as keyword arguments. These values can
change over time (training steps), e.g., for learning rate schedules.

To expose subclass hyperparameters for gin configuration, override this
constructor and use explicitly named keyword arguments. See
momentum.Momentum.__init__ for one such example.

	Parameters

	
	learning_rate – Learning rate for the optimizer. This can change during
training by means of a training rate schedule.

	clip_grad_norm – If specified, this scalar value is used to limit gradient
size – all gradient elements in a training step are treated as if
they belonged to a single vector and then scaled back if needed so
that such a vector’s L2 norm does not exceed clip_grad_norm. If
None, no clipping happens.

	**init_opt_params – Initial values of any additional optimizer parameters.

	
init(weights)

	Creates optimizer slots that fit the given weights.

	Parameters

	weights – Trainable weights for one layer. Optimizer slots typically match
the data shape and type of the given layer weights.

	
update(step, grads, weights, avg_sq_grad, opt_params)

	Computes updated layer weights and optimizer slots for one training step.

	Parameters

	
	step – Training step number.

	grads – Gradient values for this node (from back-propagation during a
training step).

	weights – Current weight values for this node (i.e., layer weights).

	slots – Current slot values for this node.

	opt_params – Optimizer hyperparameters (e.g. learning rate, momentum),
same across all nodes in the model.

	Returns

	Tuple of (new_weights, new_slots), which the Trax runtime will use to
update the model and optimizer within each training step.

sm3

SM3 optimizer class.

	
class trax.optimizers.sm3.MomentumType

	Bases: enum.IntEnum

An enumeration.

	
EMA = 1

	

	
HEAVY_BALL = 2

	

	
NESTEROV = 3

	

	
class trax.optimizers.sm3.SM3(learning_rate=0.01, momentum=0.9, second_moment_averaging=1.0, weight_decay=0.0, momentum_type=<MomentumType.EMA: 1>)

	Bases: trax.optimizers.base.Optimizer

SM3 optimizer, as described in https://arxiv.org/abs/1901.11150.

	
__init__(learning_rate=0.01, momentum=0.9, second_moment_averaging=1.0, weight_decay=0.0, momentum_type=<MomentumType.EMA: 1>)

	Create the SM3 optimizer.

Memory-Efficient Adaptive Optimization.
https://arxiv.org/abs/1901.11150

	Parameters

	
	learning_rate – a postitive scalar value for the initial learning rate.

	momentum – optional, a positive scalar value for momentum

	second_moment_averaging – averaging of second moments (if 1.0, adds from
begining of time like AdaGrad).

	weight_decay – Weight decay for regularizing the model.

	momentum_type – Nestrov, Heavy-Ball or EMA (Default).

	
init(w)

	Creates optimizer slots that fit the given weights.

	Parameters

	weights – Trainable weights for one layer. Optimizer slots typically match
the data shape and type of the given layer weights.

	
update(step, g, w, slots, opt_params)

	Computes updated layer weights and optimizer slots for one training step.

	Parameters

	
	step – Training step number.

	grads – Gradient values for this node (from back-propagation during a
training step).

	weights – Current weight values for this node (i.e., layer weights).

	slots – Current slot values for this node.

	opt_params – Optimizer hyperparameters (e.g. learning rate, momentum),
same across all nodes in the model.

	Returns

	Tuple of (new_weights, new_slots), which the Trax runtime will use to
update the model and optimizer within each training step.

trax.supervised

decoding

Decoding with Trax models.

	
trax.supervised.decoding.autoregressive_sample_stream(model, inputs=None, batch_size=1, temperature=1.0, start_id=0, accelerate=True)

	Yields samples from model, in autoregressive language model fashion.

This function uses model to generate outputs one position at a time, with
access to inputs for the current position and all preceding positions. The
new output becomes the next position’s input, and further calls to
autoregressive_sample_stream repeat the process for successive positions
indefinitely.

Inputs and outputs always come in batches, even if size 1. If inputs is
present, it must have shape (batch_size, inputs_sequence_length), and each
output in the stream has shape (batch_size, 1).

	Parameters

	
	model – A layer object (subclass of trax.layers.Layer) created in
‘predict’ mode and initialized from trained weights. The model
must have a structure that allows it to run as an autoregressive
one-sample-at-a-time predictor (e.g., trax.models.TransformerLM).

	inputs – Sequence of symbols the model sees as input the first time it
generates an output. If None, the model generates the first output
based on just the start symbol.

	batch_size – Number of sequences to generate in parallel as a batch.

	temperature – Parameter that controls the sharpness of the softmax that
feeds the sampling process. Values range from 0.0 (all probability mass
goes to one candidate; like an argmax) to positive infinity (all
candidates have equal probability).

	start_id – Integer representing the start symbol for the autoregressive
process, or array of shape (batch_size, 1) of such integers.

	accelerate – If True, create an accelerated version of model and use it
for generating outputs.

	Yields

	Tensor of integers with shape (batch_size, 1), representing the batch of
outputs for the next position in the stream.

	
trax.supervised.decoding.autoregressive_sample(model, inputs=None, batch_size=1, temperature=1.0, start_id=0, eos_id=1, max_length=100, accelerate=True)

	Returns a batch of sequences created by autoregressive sampling.

This function uses model to generate outputs one position at a time, with
access to inputs for the current position and all preceding positions. The
new output becomes the next position’s input, and this loop repeats until
either the model outputs the eos_id value or the output sequence reaches
max_length items.

	Parameters

	
	model – A layer object (subclass of trax.layers.Layer) created in
‘predict’ mode and initialized from trained weights. The model
must have a structure that allows it to run as autoregressive
one-sample-at-a-time predictor (e.g., trax.models.TransformerLM).

	inputs – Sequence of symbols the model sees as input the first time it
generates an output. If None, the model must generate the first output
with no input to guide it.

	batch_size – Number of sequences to generate in parallel as a batch.

	temperature – Parameter that controls the sharpness of the softmax that
feeds the sampling process. Values range from 0.0 (all probability mass
goes to one candidate; like an argmax) to positive infinity (all
candidates have equal probability).

	start_id – The start symbol (ID/integer) for the autoregressive process,
or array of shape (batch_size, 1) of such integers.

	eos_id – The end-of-sequence symbol (ID/integer) for the autoregressive
process.

	max_length – Maximum length for generated sequences.

	accelerate – If True, create an accelerated version of model and use it
for generating outputs.

	Returns

	Tensor of integers with shape (batch_size, output_length) representing
a batch of output sequences. output_length is the maximum length of the
output sequences, where each sequence can be no longer than max_length.

	
trax.supervised.decoding.beam_search(model, inputs=None, batch_size=1, n_beams=2, start_id=0, eos_id=1, max_length=100, length_penalty=1.0, accelerate=True)

	Returns a batch of n_beams-sequences created by beam search.

This function uses model to generate outputs one position at a time, with
access to inputs for the current position and all preceding positions. The
new output becomes the next position’s input, and this loop repeats until
either the model outputs the eos_id value or the output sequence reaches
max_length items – but keeping n_beams top beams.

	Parameters

	
	model – A layer object (subclass of trax.layers.Layer) created in
‘predict’ mode and initialized from trained weights. The model
must have a structure that allows it to run as autoregressive
one-sample-at-a-time predictor (e.g., trax.models.TransformerLM).

	inputs – Sequence of symbols the model sees as input the first time it
generates an output. If None, the model must generate the first output
with no input to guide it.

	batch_size – Number of sequences to generate in parallel as a batch.

	n_beams – How many beams to consider at the same time.

	start_id – The start symbol (ID/integer) for the autoregressive process,
or array of shape (batch_size, 1) of such integers.

	eos_id – The end-of-sequence symbol (ID/integer) for the autoregressive
process.

	max_length – Maximum length for generated sequences.

	length_penalty – Factor alpha in calculating the length penalty for beams.

	accelerate – If True, create an accelerated version of model and use it
for generating outputs.

	Returns

	Tensor of integers with shape (batch_size, n_beams, output_length) with
a batch of output sequences. output_length is the maximum length of the
output sequences, where each sequence can be no longer than max_length.

lr_schedules

Learning rate (LR) schedules.

In Trax a learning rate schedule is a function:
\(\text{step} \mapsto \text{learning_rate}\).
This module provides helpers for constructing such functions. For example:

constant(0.001)

returns a function that always returns 0.001.

	
trax.supervised.lr_schedules.constant(value)

	Returns an LR schedule that is constant from time (step) 1 to infinity.

	
trax.supervised.lr_schedules.warmup(n_warmup_steps, max_value)

	Returns an LR schedule with linear warm-up followed by constant value.

	Parameters

	
	n_warmup_steps – Number of steps during which the learning rate rises on
a line connecting (0, 0) and (n_warmup_steps, max_value).

	max_value – Value for learning rate after warm-up has finished.

	
trax.supervised.lr_schedules.warmup_and_rsqrt_decay(n_warmup_steps, max_value)

	Returns an LR schedule with warm-up + reciprocal square root decay.

	
trax.supervised.lr_schedules.multifactor(factors='constant * linear_warmup * rsqrt_decay', constant=0.1, warmup_steps=400, decay_factor=0.5, steps_per_decay=20000, steps_per_cycle=100000, second_constant=0.01, second_constant_step=10000, minimum=0)

	Factor-based learning rate schedule.

Interprets factors in the factors string which can consist of:
* constant: interpreted as the constant value,
* linear_warmup: interpreted as linear warmup until warmup_steps,
* rsqrt_decay: divide by square root of max(step, warmup_steps)
* decay_every: Every k steps decay the learning rate by decay_factor.
* cosine_deay: Cyclic cosine decay, uses steps_per_cycle parameter.
* two_constants: constant until second_constant_step, then switch to

second_constant.

	Parameters

	
	factors – a string with factors separated by ‘*’ that defines the schedule.

	constant – float, the starting constant for the learning rate schedule.

	warmup_steps – how many steps to warm up for in the warmup schedule.

	decay_factor – The amount to decay the learning rate by.

	steps_per_decay – How often to decay the learning rate.

	steps_per_cycle – Steps per cycle when using cosine decay.

	second_constant – float, the second constant for the learning rate schedule.

	second_constant_step – the step when the second_constant is triggered.

	minimum – if the computed rate is below the minimum, then return the minimum.

	Returns

	float -> {‘learning_rate’: float}, the
step-dependent lr.

	Return type

	a function learning_rate(step)

training

Simplified API (under development) for supervised learning/training in Trax.

This module will eventually replace trainer_lib.Trainer.

Key classes:

	Loop: Core training loop for an n-step training session,
starting from random initialization.

	TrainTask: Labeled data + feedback mechanism (loss function w/
optimizer) for modifying a model’s weights.

	Optimizer: How to compute model weight updates using
loss-derived gradients. May contain state (“slots”, 1-1 with model weights)
that accumulates across training steps. (This class is defined in the
trax.optimizers.)

	EvalTask: How and when to measure model performance as a
function of training step number.

	
class trax.supervised.training.Loop(model, tasks, eval_model=None, eval_tasks=None, output_dir=None, checkpoint_at=None, checkpoint_low_metric=None, checkpoint_high_metric=None, permanent_checkpoint_at=None, eval_at=None, which_task=None, n_devices=None, random_seed=None, loss_chunk_size=0, use_memory_efficient_trainer=False, adasum=False, callbacks=None)

	Bases: object

Loop that can run for a given number of steps to train a supervised model.

Can train the model on multiple tasks by interleaving updates according to the
which_task argument.

The typical supervised training process randomly initializes a model and
updates its weights via feedback (loss-derived gradients) from a training
task, by looping through batches of labeled data. A training loop can also
be configured to run periodic evals and save intermediate checkpoints.

For speed, the implementation takes advantage of JAX’s composable function
transformations (specifically, jit and grad). It creates JIT-compiled
pure functions derived from variants of the core model; schematically:

	training variant: jit(grad(pure_function(model+loss)))

	evals variant: jit(pure_function(model+evals))

In training or during evals, these variants are called with explicit
arguments for all relevant input data, model weights/state, optimizer slots,
and random number seeds:

	batch: labeled data

	model weights/state: trainable weights and input-related state (e.g., as
used by batch norm)

	optimizer slots: weights in the optimizer that evolve during the training
process

	random number seeds: JAX PRNG keys that enable high-quality, distributed,
repeatable generation of pseudo-random numbers

	
__init__(model, tasks, eval_model=None, eval_tasks=None, output_dir=None, checkpoint_at=None, checkpoint_low_metric=None, checkpoint_high_metric=None, permanent_checkpoint_at=None, eval_at=None, which_task=None, n_devices=None, random_seed=None, loss_chunk_size=0, use_memory_efficient_trainer=False, adasum=False, callbacks=None)

	Configures a training Loop, including a random initialization.

	Parameters

	
	model – Trax layer, representing the core model to be trained. Loss
functions and eval functions (a.k.a. metrics) are considered to be
outside the core model, taking core model output and data labels as
their two inputs.

	tasks – List of TrainTask instances, which define the training
data, loss function, and optimizer to be used in respective tasks in
this training loop. It can also be a single TrainTask
instance which is treated in the same way as a singleton list.

	eval_model – Optional Trax layer, representing model used for evaluation,
e.g., with dropout turned off. If None, the training model (model)
will be used.

	eval_tasks – List of EvalTask instances which define how to
evaluate the model: which validation data to use and which metrics to
report. Evaluation on each of the tasks and will run and be reported
separately which allows to score a model on different subtasks. This
argument can also be None, in which case no evals will be run, or
a single EvalTask, which wil be treated in the same way
as a singleton list.

	output_dir – Path telling where to save outputs (evals and checkpoints).
Can be None if both eval_task and checkpoint_at are
None.

	checkpoint_at – Function (integer –> boolean) telling, for step n, whether
that step should have its checkpoint saved. If None, the default
is periodic checkpointing at task.n_steps_per_checkpoint.

	checkpoint_low_metric – Name of metric, or None. The metric name must
be one of the metric names from the evals in eval_tasks. At
checkpoint times determined by checkpoint_at, a separate
specially named checkpoint will be saved (overwriting any previous
version) if the designated metric reaches a value less than or equal
to any previous recorded low value. No such checkpoint is saved if
arg value is None.

	checkpoint_high_metric – Name of metric, or None. The metric name must
be one of the metric names from the evals in eval_tasks. At
checkpoint times determined by checkpoint_at, a separate
specially named checkpoint will be saved (overwriting any previous
version) if the designated metric reaches a value greater than or
equal to any previous recorded high value. No such checkpoint is
saved if arg value is None.

	permanent_checkpoint_at – Function (integer –> boolean) telling,
for step n, whether that step should have its checkpoint saved
permanently. If None, the default is periodic checkpointing at
task.n_steps_per_permanent_checkpoint.

	eval_at – Function (integer –> boolean) that says, for training step n,
whether that step should run evals. If None, run evals on the
first step and on every N’th step, as determined by the first
training task.

	which_task – Function (integer –> integer) indicating which task should be
used at which training step. Can be set to None in single-task
training.

	n_devices – integer or None, the number of devices for this
computation.

	random_seed – the random seed to use; time/os dependent if None
(default).

	loss_chunk_size – int, if > 0 use chunks of this size to make loss
computation more more memory-efficient.

	use_memory_efficient_trainer – whether to use a special memory-efficient
trainer; if set to 2, the memory efficiency if very aggressive

	adasum – if True, use adaptive summation for multi-device gradients

	callbacks – List of subclasses of StepCallback to call on training
steps.

	
run(n_steps=1)

	Runs this training loop for n steps.

Optionally runs evals and saves checkpoints at specified points.

	Parameters

	n_steps – Stop training after completing n steps.

	
step

	Returns current step number in this training session.

	
history

	Returns history in this training session.

	
n_devices

	Returns the number of devices to be used in this computation.

	
is_chief

	Returns true if this Loop is the chief.

	
model

	Returns the model that is training.

	
tasks

	Returns the training tasks.

	
eval_model

	Returns the model used for evaluation.

	
eval_tasks

	Returns the evaluation tasks.

	
output_dir

	Returns the output directory.

	
new_rng()

	Returns a new single-use random number generator (JAX PRNG key).

	
update_weights_and_state(weights=None, state=None)

	Updates the weights and state of the trained model.

Sends this data both to the singleton model accessible via Loop.model
and to the replicated model on the accelerator.

Useful when the weights or state are modified outside of training, e.g.
during data collection in RL agents.

	Parameters

	
	weights – Model weights or None. If None, don’t set.

	state – Model state or None. If None, don’t set.

	
run_evals(summary_writers=None)

	Runs and records evals for this training session.

	Parameters

	summary_writers – List of per-task Jaxboard summary writers to log metrics.

	
log_summary(values, summary_writer, value_prefix, log_prefix, stdout=True)

	Logs and saves provided metrics.

	Parameters

	
	values – Dict from metric name to metric value.

	summary_writer – Jaxboard summary writer.

	value_prefix – String appended in front of summary_writer entries.

	log_prefix – String appended in front of logs.

	stdout – Boolean saying if logs should be logged to stdout as well.

	
save_checkpoint(basename)

	Saves checkpoint (multiple files) to disk for the current training step.

Saving a checkpoint will overwrite any previous checkpoint saved with the
same basename. Use differing basename values to save multiple
checkpoints or multiple copies of the same checkpoint.

	Parameters

	basename – Basename for saving a checkpoint. Full file paths for the saved
checkpoint will combine the output dir, basename, and relevant file
extensions (e.g., .weights.npy.gz).

	
load_checkpoint(directory=None, filename=None)

	Loads model weights and step from a checkpoint on disk.

	Parameters

	
	directory – Directory with the checkpoint (self._output_dir by default).

	filename – Checkpoint file name (model.pkl.gz by default).

	
trax.supervised.training.pickle_to_file(obj, file_path, gzip=False)

	Pickle obj to file_path with gzipping and failure protection.

	
trax.supervised.training.unpickle_from_file(file_path, gzip=False)

	Unpickle obj from file_path with gzipping.

	
trax.supervised.training.init_host_and_devices(n_devices=None, random_seed=None)

	Initializes host and device attributes for this trainer.

	Parameters

	
	n_devices – Number of devices this trainer will use. If None, get the
number from the backend.

	random_seed – Random seed as the starting point for all random numbers used
by the trainer. If None, calculate one from system time and host id.

	Returns

	True if this trainer has special chief responsibilities.
host_count: Number of hosts in this computation.
n_devices: The passed in value of n_devices or a computed default (for this

host).

random_seed: The passed in value of random_seed or a computed default.

	Return type

	is_chief

trax.rl package

actor_critic

Classes for RL training in Trax.

	
class trax.rl.actor_critic.ActorCriticAgent(task, value_model=None, value_optimizer=None, value_lr_schedule=<function multifactor>, value_batch_size=64, value_train_steps_per_epoch=500, value_evals_per_epoch=1, value_eval_steps=1, n_shared_layers=0, added_policy_slice_length=0, n_replay_epochs=1, scale_value_targets=False, q_value=False, q_value_aggregate='logsumexp', q_value_temperature=1.0, q_value_n_samples=1, q_value_normalization=False, offline=False, **kwargs)

	Bases: trax.rl.training.PolicyAgent

Trains policy and value models using actor-critic methods.

	Attrs:

	
	on_policy (bool): Whether the algorithm is on-policy. Used in the data

	generators. Should be set in derived classes.

	
on_policy = None

	

	
__init__(task, value_model=None, value_optimizer=None, value_lr_schedule=<function multifactor>, value_batch_size=64, value_train_steps_per_epoch=500, value_evals_per_epoch=1, value_eval_steps=1, n_shared_layers=0, added_policy_slice_length=0, n_replay_epochs=1, scale_value_targets=False, q_value=False, q_value_aggregate='logsumexp', q_value_temperature=1.0, q_value_n_samples=1, q_value_normalization=False, offline=False, **kwargs)

	Configures the actor-critic trainer.

	Parameters

	
	task – RLTask instance to use.

	value_model – Model to use for the value function.

	value_optimizer – Optimizer to train the value model.

	value_lr_schedule – lr schedule for value model training.

	value_batch_size – Batch size for value model training.

	value_train_steps_per_epoch – Number of steps are we using to train the
value model in each epoch.

	value_evals_per_epoch – Number of value trainer evaluations per RL epoch.
Every evaluation, we also synchronize the weights of the target
network.

	value_eval_steps – Number of value trainer steps per evaluation; only
affects metric reporting.

	n_shared_layers – Number of layers to share between value and policy
models.

	added_policy_slice_length – How much longer should slices of
trajectories be for policy than for value training; this
is useful for TD calculations and only affect the length
of elements produced for policy batches; value batches
have maximum length set by max_slice_length in **kwargs.

	n_replay_epochs – Number of last epochs to take into the replay buffer;
only makes sense for off-policy algorithms.

	scale_value_targets – If True, scale value function targets by
1 / (1 - gamma).

	q_value – If True, use Q-values as baselines.

	q_value_aggregate – How to aggregate Q-values. Options: ‘mean’, ‘max’,
‘softmax’, ‘logsumexp’.

	q_value_temperature – Temperature parameter for the ‘softmax’ and
‘logsumexp’ aggregation methods.

	q_value_n_samples – Number of samples to average over when calculating
baselines based on Q-values.

	q_value_normalization – How to normalize Q-values before aggregation.
Allowed values: ‘std’, ‘abs’, None. If None, don’t normalize.

	offline – Whether to train in offline mode. This matters for some
algorithms, e.g. QWR.

	**kwargs – Arguments for PolicyAgent superclass.

	
value_mean

	The mean value of the value function.

	
value_batches_stream()

	Use the RLTask self._task to create inputs to the value model.

	
policy_inputs(trajectory, values)

	Create inputs to policy model from a TimeStepBatch and values.

	Parameters

	
	trajectory – a TimeStepBatch, the trajectory to create inputs from

	values – a numpy array: value function computed on trajectory

	Returns

	a tuple of numpy arrays of the form (inputs, x1, x2, …) that will be
passed to the policy model; policy model will compute outputs from
inputs and (outputs, x1, x2, …) will be passed to self.policy_loss
which should be overridden accordingly.

	
policy_batches_stream()

	Use the RLTask self._task to create inputs to the policy model.

	
train_epoch()

	Trains RL for one epoch.

	
close()

	

	
class trax.rl.actor_critic.AdvantageBasedActorCriticAgent(task, advantage_estimator=<function td_lambda>, advantage_normalization=True, advantage_normalization_epsilon=1e-05, advantage_normalization_factor=1.0, added_policy_slice_length=0, **kwargs)

	Bases: trax.rl.actor_critic.ActorCriticAgent

Base class for advantage-based actor-critic algorithms.

	
__init__(task, advantage_estimator=<function td_lambda>, advantage_normalization=True, advantage_normalization_epsilon=1e-05, advantage_normalization_factor=1.0, added_policy_slice_length=0, **kwargs)

	Configures the actor-critic trainer.

	Parameters

	
	task – RLTask instance to use.

	value_model – Model to use for the value function.

	value_optimizer – Optimizer to train the value model.

	value_lr_schedule – lr schedule for value model training.

	value_batch_size – Batch size for value model training.

	value_train_steps_per_epoch – Number of steps are we using to train the
value model in each epoch.

	value_evals_per_epoch – Number of value trainer evaluations per RL epoch.
Every evaluation, we also synchronize the weights of the target
network.

	value_eval_steps – Number of value trainer steps per evaluation; only
affects metric reporting.

	n_shared_layers – Number of layers to share between value and policy
models.

	added_policy_slice_length – How much longer should slices of
trajectories be for policy than for value training; this
is useful for TD calculations and only affect the length
of elements produced for policy batches; value batches
have maximum length set by max_slice_length in **kwargs.

	n_replay_epochs – Number of last epochs to take into the replay buffer;
only makes sense for off-policy algorithms.

	scale_value_targets – If True, scale value function targets by
1 / (1 - gamma).

	q_value – If True, use Q-values as baselines.

	q_value_aggregate – How to aggregate Q-values. Options: ‘mean’, ‘max’,
‘softmax’, ‘logsumexp’.

	q_value_temperature – Temperature parameter for the ‘softmax’ and
‘logsumexp’ aggregation methods.

	q_value_n_samples – Number of samples to average over when calculating
baselines based on Q-values.

	q_value_normalization – How to normalize Q-values before aggregation.
Allowed values: ‘std’, ‘abs’, None. If None, don’t normalize.

	offline – Whether to train in offline mode. This matters for some
algorithms, e.g. QWR.

	**kwargs – Arguments for PolicyAgent superclass.

	
policy_inputs(trajectory, values)

	Create inputs to policy model from a TimeStepBatch and values.

	
policy_loss_given_log_probs

	Policy loss given action log-probabilities.

	
policy_loss

	Policy loss.

	
policy_metrics

	

	
advantage_mean

	

	
advantage_std

	

	
trax.rl.actor_critic.every(n_steps)

	Returns True every n_steps, for use as *_at functions in various places.

	
class trax.rl.actor_critic.LoopActorCriticAgent(task, model_fn, optimizer=<class 'trax.optimizers.adam.Adam'>, policy_lr_schedule=<function multifactor>, policy_n_steps_per_epoch=1000, policy_weight_fn=<function LoopActorCriticAgent.<lambda>>, value_lr_schedule=<function multifactor>, value_n_steps_per_epoch=1000, value_sync_at=<function LoopActorCriticAgent.<lambda>>, advantage_estimator=<function monte_carlo>, batch_size=64, network_eval_at=None, n_eval_batches=1, max_slice_length=1, margin=0, n_replay_epochs=1, **kwargs)

	Bases: trax.rl.training.Agent

Base class for actor-critic algorithms based on Loop.

	
on_policy = None

	

	
__init__(task, model_fn, optimizer=<class 'trax.optimizers.adam.Adam'>, policy_lr_schedule=<function multifactor>, policy_n_steps_per_epoch=1000, policy_weight_fn=<function LoopActorCriticAgent.<lambda>>, value_lr_schedule=<function multifactor>, value_n_steps_per_epoch=1000, value_sync_at=<function LoopActorCriticAgent.<lambda>>, advantage_estimator=<function monte_carlo>, batch_size=64, network_eval_at=None, n_eval_batches=1, max_slice_length=1, margin=0, n_replay_epochs=1, **kwargs)

	Initializes LoopActorCriticAgent.

	Parameters

	
	task – RLTask instance to use.

	model_fn – Function mode -> Trax model, building a joint policy and value
network.

	optimizer – Optimizer for the policy and value networks.

	policy_lr_schedule – Learning rate schedule for the policy network.

	policy_n_steps_per_epoch – Number of steps to train the policy network for
in each epoch.

	policy_weight_fn – Function advantages -> weights for calculating the
log probability weights in policy training.

	value_lr_schedule – Learning rate schedule for the value network.

	value_n_steps_per_epoch – Number of steps to train the value network for
in each epoch.

	value_sync_at – Function step -> bool indicating when to synchronize the
target network with the trained network in value training.

	advantage_estimator – Advantage estimator to use in policy and value
training.

	batch_size – Batch size for training the networks.

	network_eval_at – Function step -> bool indicating in when to evaluate the
networks.

	n_eval_batches – Number of batches to compute the network evaluation
metrics on.

	max_slice_length – Maximum length of a trajectory slice to train on.

	margin – Number of timesteps to add at the end of each trajectory slice for
better advantage estimation.

	n_replay_epochs – Number of epochs of trajectories to store in the replay
buffer.

	**kwargs – Keyword arguments forwarded to Agent.

	
loop

	Loop exposed for testing.

	
policy(trajectory, temperature=1.0)

	Policy function that allows to play using this agent.

	
train_epoch()

	Trains RL for one epoch.

	
class trax.rl.actor_critic.A2C(task, entropy_coeff=0.01, **kwargs)

	Bases: trax.rl.actor_critic.AdvantageBasedActorCriticAgent

Trains policy and value models using the A2C algorithm.

	
on_policy = True

	

	
__init__(task, entropy_coeff=0.01, **kwargs)

	Configures the A2C Trainer.

	
policy_loss_given_log_probs

	Definition of the Advantage Actor Critic (A2C) loss.

	
class trax.rl.actor_critic.PPO(task, epsilon=0.2, entropy_coeff=0.01, **kwargs)

	Bases: trax.rl.actor_critic.AdvantageBasedActorCriticAgent

The Proximal Policy Optimization Algorithm aka PPO.

Trains policy and value models using the PPO algorithm.

	
on_policy = True

	

	
__init__(task, epsilon=0.2, entropy_coeff=0.01, **kwargs)

	Configures the PPO Trainer.

	
policy_loss_given_log_probs

	Definition of the Proximal Policy Optimization loss.

	
trax.rl.actor_critic.awr_weights(advantages, beta, thresholds)

	

	
trax.rl.actor_critic.awr_metrics(beta, thresholds, preprocess_layer=None)

	

	
trax.rl.actor_critic.awr_weight_stat(stat_name, stat_fn, beta, thresholds, preprocess_layer)

	

	
trax.rl.actor_critic.AWRLoss(beta, w_max, thresholds)

	Definition of the Advantage Weighted Regression (AWR) loss.

	
class trax.rl.actor_critic.AWR(task, beta=1.0, w_max=20.0, thresholds=None, **kwargs)

	Bases: trax.rl.actor_critic.AdvantageBasedActorCriticAgent

Trains policy and value models using AWR.

	
on_policy = False

	

	
__init__(task, beta=1.0, w_max=20.0, thresholds=None, **kwargs)

	Configures the AWR Trainer.

	
policy_loss_given_log_probs

	Policy loss.

	
class trax.rl.actor_critic.LoopAWR(task, model_fn, beta=1.0, w_max=20, **kwargs)

	Bases: trax.rl.actor_critic.LoopActorCriticAgent

Advantage Weighted Regression.

	
on_policy = False

	

	
__init__(task, model_fn, beta=1.0, w_max=20, **kwargs)

	Initializes LoopActorCriticAgent.

	Parameters

	
	task – RLTask instance to use.

	model_fn – Function mode -> Trax model, building a joint policy and value
network.

	optimizer – Optimizer for the policy and value networks.

	policy_lr_schedule – Learning rate schedule for the policy network.

	policy_n_steps_per_epoch – Number of steps to train the policy network for
in each epoch.

	policy_weight_fn – Function advantages -> weights for calculating the
log probability weights in policy training.

	value_lr_schedule – Learning rate schedule for the value network.

	value_n_steps_per_epoch – Number of steps to train the value network for
in each epoch.

	value_sync_at – Function step -> bool indicating when to synchronize the
target network with the trained network in value training.

	advantage_estimator – Advantage estimator to use in policy and value
training.

	batch_size – Batch size for training the networks.

	network_eval_at – Function step -> bool indicating in when to evaluate the
networks.

	n_eval_batches – Number of batches to compute the network evaluation
metrics on.

	max_slice_length – Maximum length of a trajectory slice to train on.

	margin – Number of timesteps to add at the end of each trajectory slice for
better advantage estimation.

	n_replay_epochs – Number of epochs of trajectories to store in the replay
buffer.

	**kwargs – Keyword arguments forwarded to Agent.

	
trax.rl.actor_critic.SamplingAWRLoss(beta, w_max, thresholds, reweight=False, sampled_all_discrete=False)

	Definition of the Advantage Weighted Regression (AWR) loss.

	
class trax.rl.actor_critic.SamplingAWR(task, beta=1.0, w_max=20.0, thresholds=None, reweight=False, **kwargs)

	Bases: trax.rl.actor_critic.AdvantageBasedActorCriticAgent

Trains policy and value models using Sampling AWR.

	
on_policy = False

	

	
__init__(task, beta=1.0, w_max=20.0, thresholds=None, reweight=False, **kwargs)

	Configures the AWR Trainer.

	
policy_metrics

	

	
policy_loss

	Policy loss.

	
policy_batches_stream()

	Use the RLTask self._task to create inputs to the policy model.

actor_critic_joint

Classes for RL training in Trax.

	
class trax.rl.actor_critic_joint.ActorCriticJointAgent(task, joint_model=None, optimizer=None, lr_schedule=<function multifactor>, batch_size=64, train_steps_per_epoch=500, supervised_evals_per_epoch=1, supervised_eval_steps=1, n_trajectories_per_epoch=50, max_slice_length=1, normalize_advantages=True, output_dir=None, n_replay_epochs=1)

	Bases: trax.rl.training.Agent

Trains a joint policy-and-value model using actor-critic methods.

	
__init__(task, joint_model=None, optimizer=None, lr_schedule=<function multifactor>, batch_size=64, train_steps_per_epoch=500, supervised_evals_per_epoch=1, supervised_eval_steps=1, n_trajectories_per_epoch=50, max_slice_length=1, normalize_advantages=True, output_dir=None, n_replay_epochs=1)

	Configures the joint trainer.

	Parameters

	
	task – RLTask instance, which defines the environment to train on.

	joint_model – Trax layer, representing the joint policy and value model.

	optimizer – the optimizer to use to train the joint model.

	lr_schedule – learning rate schedule to use to train the joint model/.

	batch_size – batch size used to train the joint model.

	train_steps_per_epoch – how long to train the joint model in each RL epoch.

	supervised_evals_per_epoch – number of value trainer evaluations per RL
epoch - only affects metric reporting.

	supervised_eval_steps – number of value trainer steps per evaluation -
only affects metric reporting.

	n_trajectories_per_epoch – how many trajectories to collect per epoch.

	max_slice_length – the maximum length of trajectory slices to use.

	normalize_advantages – if True, then normalize advantages - currently
implemented only in PPO.

	output_dir – Path telling where to save outputs (evals and checkpoints).

	n_replay_epochs – how many last epochs to take into the replay buffer;
> 1 only makes sense for off-policy algorithms.

	
close()

	

	
batches_stream()

	Use self.task to create inputs to the policy model.

	
joint_loss

	Joint policy and value loss layer.

	
advantage_mean

	Mean of advantages.

	
advantage_norm

	Norm of advantages.

	
value_loss

	Value loss - so far generic for all A2C.

	
explained_variance

	Explained variance metric.

	
log_probs_mean

	Mean of log_probs aka dist_inputs.

	
preferred_move

	Preferred move - the mean of selected moves.

	
policy(trajectory, temperature=1.0)

	Chooses an action to play after a trajectory.

	
train_epoch()

	Trains RL for one epoch.

	
class trax.rl.actor_critic_joint.PPOJoint(task, epsilon=0.2, value_loss_coeff=0.1, entropy_coeff=0.01, **kwargs)

	Bases: trax.rl.actor_critic_joint.ActorCriticJointAgent

The Proximal Policy Optimization Algorithm aka PPO.

Trains policy and value models using the PPO algortithm.

	
on_policy = True

	

	
__init__(task, epsilon=0.2, value_loss_coeff=0.1, entropy_coeff=0.01, **kwargs)

	Configures the PPO Trainer.

	
batches_stream()

	Use the RLTask self._task to create inputs to the value model.

	
joint_loss

	Joint policy and value loss.

	
probs_ratio_mean

	Joint policy and value loss layer.

	
clip_fraction

	Joint policy and value loss layer.

	
entropy_loss

	Entropy layer.

	
approximate_kl_divergence

	Approximate KL divergence.

	
unclipped_objective_mean

	

	
clipped_objective_mean

	

	
ppo_objective

	PPO objective with local parameters.

	
ppo_objective_mean

	PPO objective mean.

	
class trax.rl.actor_critic_joint.A2CJoint(task, value_loss_coeff=0.1, entropy_coeff=0.01, **kwargs)

	Bases: trax.rl.actor_critic_joint.ActorCriticJointAgent

The A2C algorithm.

Trains policy and value models using the A2C algortithm.

	
on_policy = True

	

	
__init__(task, value_loss_coeff=0.1, entropy_coeff=0.01, **kwargs)

	Configures the A2C Trainer.

	
batches_stream()

	Use the RLTask self._task to create inputs to the value model.

	
joint_loss

	Joint policy and value loss.

	
entropy_loss

	Entropy layer.

	
approximate_kl_divergence

	Approximate KL divergence.

	
a2c_objective

	A2C objective with local parameters.

	
a2c_objective_mean

	A2C objective mean.

	
class trax.rl.actor_critic_joint.AWRJoint(task, value_loss_coeff=0.1, beta=1.0, w_max=20.0, thresholds=None, **kwargs)

	Bases: trax.rl.actor_critic_joint.ActorCriticJointAgent

Trains a joint policy-and-value model using AWR.

	
__init__(task, value_loss_coeff=0.1, beta=1.0, w_max=20.0, thresholds=None, **kwargs)

	Configures the joint AWR Trainer.

	
batches_stream()

	Use the RLTask self._task to create inputs to the value model.

	
joint_loss

	Joint policy and value loss.

advantages

RL advantage estimators.

	
trax.rl.advantages.mask_discount(discount, discount_mask)

	Computes a discount to apply at a given timestep, based on the mask.

	
trax.rl.advantages.discounted_returns(rewards, gammas)

	Computes discounted returns for a trajectory or a batch of them.

	
trax.rl.advantages.monte_carlo(gamma, margin)

	Calculate Monte Carlo advantage.

We assume the values are a tensor of shape [batch_size, length] and this
is the same shape as rewards and returns.

	Parameters

	
	gamma – float, gamma parameter for TD from the underlying task

	margin – number of extra steps in the sequence

	Returns

	Function (rewards, returns, values, dones) -> advantages, where advantages
advantages is an array of shape [batch_size, length - margin].

	
trax.rl.advantages.td_k(gamma, margin)

	Calculate TD-k advantage.

The k parameter is assumed to be the same as margin.

We calculate advantage(s_i) as:

gamma^n_steps * value(s_{i + n_steps}) - value(s_i) + discounted_rewards

where discounted_rewards is the sum of rewards in these steps with
discounting by powers of gamma.

	Parameters

	
	gamma – float, gamma parameter for TD from the underlying task

	margin – number of extra steps in the sequence

	Returns

	Function (rewards, returns, values, dones) -> advantages, where advantages
advantages is an array of shape [batch_size, length - margin].

	
trax.rl.advantages.td_lambda(gamma, margin, lambda_=0.95)

	Calculate TD-lambda advantage.

The estimated return is an exponentially-weighted average of different TD-k
returns.

	Parameters

	
	gamma – float, gamma parameter for TD from the underlying task

	margin – number of extra steps in the sequence

	lambda – float, the lambda parameter of TD-lambda

	Returns

	Function (rewards, returns, values, dones) -> advantages, where advantages
advantages is an array of shape [batch_size, length - margin].

	
trax.rl.advantages.gae(gamma, margin, lambda_=0.95)

	Calculate Generalized Advantage Estimation.

Calculate state values bootstrapping off the following state values -
Generalized Advantage Estimation https://arxiv.org/abs/1506.02438

	Parameters

	
	gamma – float, gamma parameter for TD from the underlying task

	margin – number of extra steps in the sequence

	lambda – float, the lambda parameter of GAE

	Returns

	Function (rewards, returns, values, dones) -> advantages, where advantages
advantages is an array of shape [batch_size, length - margin].

distributions

Probability distributions for RL training in Trax.

	
class trax.rl.distributions.Distribution

	Bases: object

Abstract class for parametrized probability distributions.

	
n_inputs

	Returns the number of inputs to the distribution (i.e. parameters).

	
sample(inputs, temperature=1.0)

	Samples a point from the distribution.

	Parameters

	
	inputs (jnp.ndarray) – Distribution inputs. Shape is subclass-specific.
Broadcasts along the first dimensions. For example, in the categorical
distribution parameter shape is (C,), where C is the number of
categories. If (B, C) is passed, the object will represent a batch of B
categorical distributions with different parameters.

	temperature – sampling temperature; 1.0 is default, at 0.0 chooses
the most probable (preferred) action.

	Returns

	Sampled point of shape dependent on the subclass and on the shape of
inputs.

	
log_prob(inputs, point)

	Retrieves log probability (or log probability density) of a point.

	Parameters

	
	inputs (jnp.ndarray) – Distribution parameters.

	point (jnp.ndarray) – Point from the distribution. Shape should be
consistent with inputs.

	Returns

	Array of log probabilities of points in the distribution.

	
LogProb()

	Builds a log probability layer for this distribution.

	
trax.rl.distributions.create_distribution(space)

	Creates a Distribution for the given Gym space.

	
trax.rl.distributions.LogLoss(distribution, **unused_kwargs)

	Builds a log loss layer for a Distribution.

normalization

Normalization helpers.

	
trax.rl.normalization.running_mean_init(shape, fill_value=0)

	

	
trax.rl.normalization.running_mean_update(x, state)

	

	
trax.rl.normalization.running_mean_get_mean(state)

	

	
trax.rl.normalization.running_mean_get_count(state)

	

	
trax.rl.normalization.running_mean_and_variance_init(shape)

	

	
trax.rl.normalization.running_mean_and_variance_update(x, state)

	

	
trax.rl.normalization.running_mean_and_variance_get_mean(state)

	

	
trax.rl.normalization.running_mean_and_variance_get_count(state)

	

	
trax.rl.normalization.running_mean_and_variance_get_variance(state)

	

	
trax.rl.normalization.LayerNormSquash(mode, width=128)

	Dense-LayerNorm-Tanh normalizer inspired by ACME.

rl_layers

A number of RL functions intended to be later wrapped as Trax layers.

Wrapping happens with help of the function tl.Fn.

	
trax.rl.rl_layers.ValueLoss(values, returns, value_loss_coeff)

	Definition of the loss of the value function.

	
trax.rl.rl_layers.ExplainedVariance(values, returns)

	Definition of explained variance - an approach from OpenAI baselines.

	
trax.rl.rl_layers.PreferredMove(dist_inputs, sample)

	Definition of the preferred move.

	
trax.rl.rl_layers.NewLogProbs(dist_inputs, actions, log_prob_fun)

	Given distribution and actions calculate log probs.

	
trax.rl.rl_layers.EntropyLoss(dist_inputs, distribution, coeff)

	Definition of the Entropy Layer.

	
trax.rl.rl_layers.ProbsRatio(dist_inputs, actions, old_log_probs, log_prob_fun)

	Probability Ratio from the PPO algorithm.

	
trax.rl.rl_layers.ApproximateKLDivergence(dist_inputs, actions, old_log_probs, log_prob_fun)

	Probability Ratio from the PPO algorithm.

	
trax.rl.rl_layers.UnclippedObjective(probs_ratio, advantages)

	Unclipped Objective from the PPO algorithm.

	
trax.rl.rl_layers.ClippedObjective(probs_ratio, advantages, epsilon)

	Clipped Objective from the PPO algorithm.

	
trax.rl.rl_layers.PPOObjective(dist_inputs, values, returns, dones, rewards, actions, old_log_probs, log_prob_fun, epsilon, normalize_advantages)

	PPO Objective.

	
trax.rl.rl_layers.A2CObjective(dist_inputs, values, returns, dones, rewards, actions, mask, log_prob_fun, normalize_advantages)

	Definition of the Advantage Actor Critic (A2C) loss.

serialization_utils

Utilities for serializing trajectories into discrete sequences.

	
trax.rl.serialization_utils.Serialize(serializer)

	Layer that serializes a given array.

	
trax.rl.serialization_utils.Interleave()

	Layer that interleaves and flattens two serialized sequences.

The first sequence can be longer by 1 than the second one. This is so we can
interleave sequences of observations and actions, when there’s 1 extra
observation at the end.

For serialized sequences [[x_1_1, …, x_1_R1], …, [x_L1_1, …, x_L1_R1]]
and [[y_1_1, …, y_1_R2], …, [y_L2_1, …, y_L2_R2]], where L1 = L2 + 1,
the result is [x_1_1, …, x_1_R1, y_1_1, …, y_1_R2, …, x_L2_1, …,
x_L2_R1, y_L2_1, …, y_L2_R2, x_L1_1, …, x_L1_R1] (batch dimension omitted
for clarity).

The layer inputs are a sequence pair of shapes (B, L1, R1) and (B, L2, R2),
where B is batch size, L* is the length of the sequence and R* is the
representation length of each element in the sequence.

	Returns

	Layer that interleaves sequence of shape (B, L1 * R1 + L2 * R2).

	
trax.rl.serialization_utils.Deinterleave(x_size, y_size)

	Layer that does the inverse of Interleave.

	
trax.rl.serialization_utils.RepresentationMask(serializer)

	Upsamples a mask to cover the serialized representation.

	
trax.rl.serialization_utils.SignificanceWeights(serializer, decay)

	Multiplies a binary mask with a symbol significance mask.

	
class trax.rl.serialization_utils.SerializedModel(seq_model, observation_serializer, action_serializer, significance_decay, mode='train')

	Bases: trax.layers.combinators.Serial

Wraps a world model in serialization machinery for training.

The resulting model takes as input the observation and action sequences,
serializes them and interleaves into one sequence, which is fed into a given
autoregressive model. The resulting logit sequence is deinterleaved into
observations and actions, and the observation logits are returned together
with computed symbol significance weights.

The model has a signature
(obs, act, obs, mask) -> (obs_logits, obs_repr, weights), where obs are
observations (the second occurrence is the target), act are actions, mask is
the observation mask, obs_logits are logits of the output observation
representation, obs_repr is the target observation representation and weights
are the target weights.

	
__init__(seq_model, observation_serializer, action_serializer, significance_decay, mode='train')

	Initializes SerializedModel.

	Parameters

	
	seq_model – Trax autoregressive model taking as input a sequence of symbols
and outputting a sequence of symbol logits.

	observation_serializer – Serializer to use for observations.

	action_serializer – Serializer to use for actions.

	significance_decay – Float from (0, 1) for exponential weighting of symbols
in the representation.

	mode – ‘train’ or ‘eval’.

	
observation_serializer

	

	
action_serializer

	

	
make_predict_model()

	Returns a predict-mode model of the same architecture.

	
seq_model_weights

	Extracts the weights of the underlying sequence model.

	
seq_model_state

	Extracts the state of the underlying sequence model.

	
trax.rl.serialization_utils.TimeSeriesModel(seq_model, low=0.0, high=1.0, precision=2, vocab_size=64, significance_decay=0.7, mode='train')

	Simplified constructor for SerializedModel, for time series prediction.

	
trax.rl.serialization_utils.RawPolicy(seq_model, n_controls, n_actions)

	Wraps a sequence model in a policy interface.

The resulting model takes as input observation anc action sequences, but only
uses the observations. Adds output heads for action logits and value
predictions.

	Parameters

	
	seq_model – Trax sequence model taking as input and outputting a sequence of
continuous vectors.

	n_controls – Number of controls.

	n_actions – Number of action categories in each control.

	Returns

	obs: (batch_size, length + 1, obs_depth)
act: (batch_size, length, n_controls)
act_logits: (batch_size, length, n_controls, n_actions)
values: (batch_size, length)

	Return type

	A model of signature (obs, act) -> (act_logits, values), with shapes

	
trax.rl.serialization_utils.substitute_inner_policy_raw(raw_policy, inner_policy)

	Substitutes the weights/state of the inner model in a RawPolicy.

	
trax.rl.serialization_utils.SerializedPolicy(seq_model, n_controls, n_actions, observation_serializer, action_serializer)

	Wraps a policy in serialization machinery for training.

The resulting model takes as input observation and action sequences, and
serializes them into one sequence similar to SerializedModel, before passing
to the given sequence model. Adds output heads for action logits and value
predictions.

	Parameters

	
	seq_model – Trax sequence model taking as input a sequence of symbols and
outputting a sequence of continuous vectors.

	n_controls – Number of controls.

	n_actions – Number of action categories in each control.

	observation_serializer – Serializer to use for observations.

	action_serializer – Serializer to use for actions.

	Returns

	A model of signature (obs, act) -> (act_logits, values), same as in
RawPolicy.

	
trax.rl.serialization_utils.substitute_inner_policy_serialized(serialized_policy, inner_policy)

	Substitutes the weights/state of the inner model in a SerializedPolicy.

	
trax.rl.serialization_utils.analyze_action_space(action_space)

	Returns the number of controls and actions for an action space.

	
trax.rl.serialization_utils.wrap_policy(seq_model, observation_space, action_space, vocab_size)

	Wraps a sequence model in either RawPolicy or SerializedPolicy.

	Parameters

	
	seq_model – Trax sequence model.

	observation_space – Gym observation space.

	action_space – Gym action space.

	vocab_size – Either the number of symbols for a serialized policy, or None.

	Returns

	RawPolicy if vocab_size is None, else SerializedPolicy.

	
trax.rl.serialization_utils.substitute_inner_policy(wrapped_policy, inner_policy, vocab_size)

	Substitutes the inner weights/state in a {Raw,Serialized}Policy.

	Parameters

	
	wrapped_policy (pytree) – Weights or state of a wrapped policy.

	inner_policy (pytree) – Weights or state of an inner policy.

	vocab_size (int or None) – Vocabulary size of a serialized policy, or None
in case of a raw policy.

	Returns

	
	New weights or state of wrapped_policy, with the inner weights/state

	copied from inner_policy.

space_serializer

Serialization of elements of Gym spaces into discrete sequences.

	
class trax.rl.space_serializer.SpaceSerializer(space, vocab_size)

	Bases: object

Base class for Gym space serializers.

	Attrs:

	
	space_type: (type) Gym space class that this SpaceSerializer corresponds

	to. Should be defined in subclasses.

	representation_length: (int) Number of symbols in the representation of

	every element of the space.

	significance_map: (np.ndarray) Integer array of the same size as the

	discrete representation, where elements describe the significance of
symbols, e.g. in fixed-precision encoding. 0 is the most significant
symbol, 1 the second most significant etc.

	
space_type = None

	

	
representation_length = None

	

	
significance_map = None

	

	
__init__(space, vocab_size)

	Creates a SpaceSerializer.

Subclasses should retain the signature.

	Parameters

	
	space – (gym.Space) Gym space of type self.space_type.

	vocab_size – (int) Number of symbols in the vocabulary.

	
vocab_size

	

	
serialize(data)

	Serializes a batch of space elements into discrete sequences.

Should be defined in subclasses.

	Parameters

	data – A batch of batch_size elements of the Gym space to be serialized.

	Returns

	int32 array of shape (batch_size, self.representation_length).

	
deserialize(representation)

	Deserializes a batch of discrete sequences into space elements.

Should be defined in subclasses.

	Parameters

	representation – int32 Numpy array of shape
(batch_size, self.representation_length) to be deserialized.

	Returns

	A batch of batch_size deserialized elements of the Gym space.

	
trax.rl.space_serializer.create(space, vocab_size)

	Creates a SpaceSerializer for the given Gym space.

	
class trax.rl.space_serializer.DiscreteSpaceSerializer(space, vocab_size)

	Bases: trax.rl.space_serializer.SpaceSerializer

Serializer for gym.spaces.Discrete.

Assumes that the size of the space fits in the number of symbols.

	
space_type

	Used by autodoc_mock_imports.

	
representation_length = 1

	

	
__init__(space, vocab_size)

	Creates a SpaceSerializer.

Subclasses should retain the signature.

	Parameters

	
	space – (gym.Space) Gym space of type self.space_type.

	vocab_size – (int) Number of symbols in the vocabulary.

	
serialize(data)

	Serializes a batch of space elements into discrete sequences.

Should be defined in subclasses.

	Parameters

	data – A batch of batch_size elements of the Gym space to be serialized.

	Returns

	int32 array of shape (batch_size, self.representation_length).

	
deserialize(representation)

	Deserializes a batch of discrete sequences into space elements.

Should be defined in subclasses.

	Parameters

	representation – int32 Numpy array of shape
(batch_size, self.representation_length) to be deserialized.

	Returns

	A batch of batch_size deserialized elements of the Gym space.

	
significance_map

	

	
class trax.rl.space_serializer.MultiDiscreteSpaceSerializer(space, vocab_size)

	Bases: trax.rl.space_serializer.SpaceSerializer

Serializer for gym.spaces.MultiDiscrete.

Assumes that the number of categories in each dimension fits in the number of
symbols.

	
space_type

	Used by autodoc_mock_imports.

	
__init__(space, vocab_size)

	Creates a SpaceSerializer.

Subclasses should retain the signature.

	Parameters

	
	space – (gym.Space) Gym space of type self.space_type.

	vocab_size – (int) Number of symbols in the vocabulary.

	
serialize(data)

	Serializes a batch of space elements into discrete sequences.

Should be defined in subclasses.

	Parameters

	data – A batch of batch_size elements of the Gym space to be serialized.

	Returns

	int32 array of shape (batch_size, self.representation_length).

	
deserialize(representation)

	Deserializes a batch of discrete sequences into space elements.

Should be defined in subclasses.

	Parameters

	representation – int32 Numpy array of shape
(batch_size, self.representation_length) to be deserialized.

	Returns

	A batch of batch_size deserialized elements of the Gym space.

	
representation_length

	

	
significance_map

	

task

Classes for defining RL tasks in Trax.

	
class trax.rl.task.TimeStepBatch(observation, action, reward, done, mask, dist_inputs, env_info, return_)

	Bases: tuple

	
action

	Alias for field number 1

	
dist_inputs

	Alias for field number 5

	
done

	Alias for field number 3

	
env_info

	Alias for field number 6

	
mask

	Alias for field number 4

	
observation

	Alias for field number 0

	
return_

	Alias for field number 7

	
reward

	Alias for field number 2

	
class trax.rl.task.EnvInfo(control_mask, discount_mask)

	Bases: tuple

	
control_mask

	Alias for field number 0

	
discount_mask

	Alias for field number 1

	
class trax.rl.task.Trajectory(observation)

	Bases: object

A trajectory of interactions with a RL environment.

Trajectories are created when interacting with an RL environment. They can
be prolonged and sliced and when completed, allow to re-calculate returns.

	
__init__(observation)

	Initialize self. See help(type(self)) for accurate signature.

	
suffix(length)

	Returns a Trajectory with the last length observations.

	
timesteps

	

	
total_return

	Sum of all rewards in this trajectory.

	
last_observation

	Return the last observation in this trajectory.

	
done

	Returns whether the trajectory is finished.

	
extend(new_observation, mask=1, **kwargs)

	Take action in the last state, getting reward and going to new state.

	
calculate_returns(gamma)

	Calculate discounted returns.

	
to_np(margin=1, timestep_to_np=None)

	Create a tuple of numpy arrays from a given trajectory.

	Parameters

	
	margin (int) – Number of dummy timesteps past the trajectory end to
include. By default we include 1, which contains the last
observation.

	timestep_to_np (callable or None) – Optional function
TimeStepBatch[Any] -> TimeStepBatch[np.array], converting the
timestep data into numpy arrays.

	Returns

	TimeStepBatch, where all fields have shape
(len(self) + margin - 1, …).

	
trax.rl.task.play(env, policy, dm_suite=False, max_steps=None, last_observation=None)

	Play an episode in env taking actions according to the given policy.

Environment is first reset and an from then on, a game proceeds. At each
step, the policy is asked to choose an action and the environment moves
forward. A Trajectory is created in that way and returns when the episode
finished, which is either when env returns done or max_steps is reached.

	Parameters

	
	env – the environment to play in, conforming to gym.Env or
DeepMind suite interfaces.

	policy – a function taking a Trajectory and returning a pair consisting
of an action (int or float) and the confidence in that action (float,
defined as the log of the probability of taking that action).

	dm_suite – whether we are using the DeepMind suite or the gym interface

	max_steps – for how many steps to play.

	last_observation – last observation from a previous trajectory slice, used to
begin a new one. Controls whether we reset the environment at the
beginning - if None, resets the env and starts the slice from the
observation got from reset().

	Returns

	a completed trajectory slice that was just played.

training

Classes for RL training in Trax.

	
class trax.rl.training.Agent(task: <sphinx.ext.autodoc.importer._MockObject object at 0x7febabcae710>, n_trajectories_per_epoch=None, n_interactions_per_epoch=None, n_eval_episodes=0, eval_steps=None, eval_temperatures=(0.0,), only_eval=False, output_dir=None, timestep_to_np=None)

	Bases: object

Abstract class for RL agents, presenting the required API.

	
__init__(task: <sphinx.ext.autodoc.importer._MockObject object at 0x7febabcae710>, n_trajectories_per_epoch=None, n_interactions_per_epoch=None, n_eval_episodes=0, eval_steps=None, eval_temperatures=(0.0,), only_eval=False, output_dir=None, timestep_to_np=None)

	Configures the Agent.

Note that subclasses can have many more arguments, which will be configured
using defaults and gin. But task and output_dir are passed explicitly.

	Parameters

	
	task – RLTask instance, which defines the environment to train on.

	n_trajectories_per_epoch – How many new trajectories to collect in each
epoch.

	n_interactions_per_epoch – How many interactions to collect in each epoch.

	n_eval_episodes – Number of episodes to play with policy at
temperature 0 in each epoch – used for evaluation only.

	eval_steps – an optional list of max_steps to use for evaluation
(defaults to task.max_steps).

	eval_temperatures – we always train with temperature 1 and evaluate with
temperature specified in the eval_temperatures list
(defaults to [0.0, 0.5])

	only_eval – If set to True, then trajectories are collected only for
for evaluation purposes, but they are not recorded.

	output_dir – Path telling where to save outputs such as checkpoints.

	timestep_to_np – Timestep-to-numpy function to override in the task.

	
current_epoch

	Returns current step number in this training session.

	
task

	Returns the task.

	
avg_returns

	

	
save_gin(summary_writer=None)

	

	
save_to_file(file_name='rl.pkl', task_file_name='trajectories.pkl')

	Save current epoch number and average returns to file.

	
init_from_file(file_name='rl.pkl', task_file_name='trajectories.pkl')

	Initialize epoch number and average returns from file.

	
policy(trajectory, temperature=1.0)

	Policy function that allows to play using this trainer.

	Parameters

	
	trajectory – an instance of trax.rl.task.Trajectory

	temperature – temperature used to sample from the policy (default=1.0)

	Returns

	a pair (action, dist_inputs) where action is the action taken and
dist_inputs is the parameters of the policy distribution, that will later
be used for training.

	
train_epoch()

	Trains this Agent for one epoch – main RL logic goes here.

	
run(n_epochs=1, n_epochs_is_total_epochs=False)

	Runs this loop for n epochs.

	Parameters

	
	n_epochs – Stop training after completing n steps.

	n_epochs_is_total_epochs – if True, consider n_epochs as the total
number of epochs to train, including previously trained ones

	
close()

	

	
class trax.rl.training.PolicyAgent(task, policy_model=None, policy_optimizer=None, policy_lr_schedule=<function multifactor>, policy_batch_size=64, policy_train_steps_per_epoch=500, policy_evals_per_epoch=1, policy_eval_steps=1, n_eval_episodes=0, only_eval=False, max_slice_length=1, output_dir=None, **kwargs)

	Bases: trax.rl.training.Agent

Agent that uses a deep learning model for policy.

Many deep RL methods, such as policy gradient (REINFORCE) or actor-critic fall
into this category, so a lot of classes will be subclasses of this one. But
some methods only have a value or Q function, these are different.

	
__init__(task, policy_model=None, policy_optimizer=None, policy_lr_schedule=<function multifactor>, policy_batch_size=64, policy_train_steps_per_epoch=500, policy_evals_per_epoch=1, policy_eval_steps=1, n_eval_episodes=0, only_eval=False, max_slice_length=1, output_dir=None, **kwargs)

	Configures the policy trainer.

	Parameters

	
	task – RLTask instance, which defines the environment to train on.

	policy_model – Trax layer, representing the policy model.
functions and eval functions (a.k.a. metrics) are considered to be
outside the core model, taking core model output and data labels as
their two inputs.

	policy_optimizer – the optimizer to use to train the policy model.

	policy_lr_schedule – learning rate schedule to use to train the policy.

	policy_batch_size – batch size used to train the policy model.

	policy_train_steps_per_epoch – how long to train policy in each RL epoch.

	policy_evals_per_epoch – number of policy trainer evaluations per RL epoch
- only affects metric reporting.

	policy_eval_steps – number of policy trainer steps per evaluation - only
affects metric reporting.

	n_eval_episodes – number of episodes to play with policy at
temperature 0 in each epoch – used for evaluation only

	only_eval – If set to True, then trajectories are collected only for
for evaluation purposes, but they are not recorded.

	max_slice_length – the maximum length of trajectory slices to use.

	output_dir – Path telling where to save outputs (evals and checkpoints).

	**kwargs – arguments for the superclass Agent.

	
policy_loss

	Policy loss.

	
policy_metrics

	

	
policy_batches_stream()

	Use self.task to create inputs to the policy model.

	
policy(trajectory, temperature=1.0)

	Chooses an action to play after a trajectory.

	
train_epoch()

	Trains RL for one epoch.

	
close()

	

	
trax.rl.training.remaining_evals(cur_step, epoch, train_steps_per_epoch, evals_per_epoch)

	Helper function to calculate remaining evaluations for a trainer.

	Parameters

	
	cur_step – current step of the supervised trainer

	epoch – current epoch of the RL trainer

	train_steps_per_epoch – supervised trainer steps per RL epoch

	evals_per_epoch – supervised trainer evals per RL epoch

	Returns

	number of remaining evals to do this epoch

	Raises

	ValueError if the provided numbers indicate a step mismatch

	
class trax.rl.training.LoopPolicyAgent(task, model_fn, value_fn, weight_fn, n_replay_epochs, n_train_steps_per_epoch, advantage_normalization, optimizer=<class 'trax.optimizers.adam.Adam'>, lr_schedule=<function multifactor>, batch_size=64, network_eval_at=None, n_eval_batches=1, max_slice_length=1, trajectory_stream_preprocessing_fn=None, **kwargs)

	Bases: trax.rl.training.Agent

Base class for policy-only Agents based on Loop.

	
__init__(task, model_fn, value_fn, weight_fn, n_replay_epochs, n_train_steps_per_epoch, advantage_normalization, optimizer=<class 'trax.optimizers.adam.Adam'>, lr_schedule=<function multifactor>, batch_size=64, network_eval_at=None, n_eval_batches=1, max_slice_length=1, trajectory_stream_preprocessing_fn=None, **kwargs)

	Initializes LoopPolicyAgent.

	Parameters

	
	task – Instance of trax.rl.task.RLTask.

	model_fn – Function (policy_distribution, mode) -> policy_model.

	value_fn – Function TimeStepBatch -> array (batch_size, seq_len)
calculating the baseline for advantage calculation.

	weight_fn – Function float -> float to apply to advantages when calculating
policy loss.

	n_replay_epochs – Number of last epochs to take into the replay buffer;
only makes sense for off-policy algorithms.

	n_train_steps_per_epoch – Number of steps to train the policy network for
in each epoch.

	advantage_normalization – Whether to normalize the advantages before
passing them to weight_fn.

	optimizer – Optimizer for network training.

	lr_schedule – Learning rate schedule for network training.

	batch_size – Batch size for network training.

	network_eval_at – Function step -> bool indicating the training steps, when
network evaluation should be performed.

	n_eval_batches – Number of batches to run during network evaluation.

	max_slice_length – The length of trajectory slices to run the network on.

	trajectory_stream_preprocessing_fn – Function to apply to the trajectory
stream before batching. Can be used e.g. to filter trajectories.

	**kwargs – Keyword arguments passed to the superclass.

	
loop

	Loop exposed for testing.

	
train_epoch()

	Trains RL for one epoch.

	
class trax.rl.training.PolicyGradient(task, model_fn, **kwargs)

	Bases: trax.rl.training.LoopPolicyAgent

Trains a policy model using policy gradient on the given RLTask.

	
__init__(task, model_fn, **kwargs)

	Initializes PolicyGradient.

	Parameters

	
	task – Instance of trax.rl.task.RLTask.

	model_fn – Function (policy_distribution, mode) -> policy_model.

	**kwargs – Keyword arguments passed to the superclass.

	
policy(trajectory, temperature=1.0)

	Policy function that samples from the trained network.

	
trax.rl.training.sharpened_network_policy(temperature, temperature_multiplier=1.0, **kwargs)

	Expert function that runs a policy network with lower temperature.

	Parameters

	
	temperature – Temperature passed from the Agent.

	temperature_multiplier – Multiplier to apply to the temperature to “sharpen”
the policy distribution. Should be <= 1, but this is not a requirement.

	**kwargs – Keyword arguments passed to network_policy.

	Returns

	Pair (action, dist_inputs) where action is the action taken and dist_inputs
is the parameters of the policy distribution, that will later be used for
training.

	
class trax.rl.training.ExpertIteration(task, model_fn, expert_policy_fn=<function sharpened_network_policy>, quantile=0.9, n_replay_epochs=10, n_train_steps_per_epoch=1000, filter_buffer_size=256, **kwargs)

	Bases: trax.rl.training.LoopPolicyAgent

Trains a policy model using expert iteration with a given expert.

	
__init__(task, model_fn, expert_policy_fn=<function sharpened_network_policy>, quantile=0.9, n_replay_epochs=10, n_train_steps_per_epoch=1000, filter_buffer_size=256, **kwargs)

	Initializes ExpertIteration.

	Parameters

	
	task – Instance of trax.rl.task.RLTask.

	model_fn – Function (policy_distribution, mode) -> policy_model.

	expert_policy_fn – Function of the same signature as network_policy, to
be used as an expert. The policy will be trained to mimic the expert on
the “solved” trajectories.

	quantile – Quantile of best trajectories to be marked as “solved”. They
will be used to train the policy.

	n_replay_epochs – Number of last epochs to include in the replay buffer.

	n_train_steps_per_epoch – Number of policy training steps to run in each
epoch.

	filter_buffer_size – Number of trajectories in the trajectory filter
buffer, used to select the best trajectories based on the quantile.

	**kwargs – Keyword arguments passed to the superclass.

	
policy(trajectory, temperature=1.0)

	Policy function that runs the expert.

	
trax.rl.training.network_policy(collect_model, policy_distribution, loop, trajectory_np, head_index=0, temperature=1.0)

	Policy function powered by a neural network.

Used to implement Agent.policy() in policy-based agents.

	Parameters

	
	collect_model – the model used for collecting trajectories

	policy_distribution – an instance of trax.rl.distributions.Distribution

	loop – trax.supervised.training.Loop used to train the policy network

	trajectory_np – an instance of trax.rl.task.TimeStepBatch

	head_index – index of the policy head a multihead model.

	temperature – temperature used to sample from the policy (default=1.0)

	Returns

	a pair (action, dist_inputs) where action is the action taken and
dist_inputs is the parameters of the policy distribution, that will later
be used for training.

	
class trax.rl.training.ValueAgent(task, value_body=None, value_optimizer=None, value_lr_schedule=<function multifactor>, value_batch_size=64, value_train_steps_per_epoch=500, value_evals_per_epoch=1, value_eval_steps=1, exploration_rate=functools.partial(<function multifactor>, factors='constant * decay_every', constant=1.0, decay_factor=0.99, steps_per_decay=1, minimum=0.1), n_eval_episodes=0, only_eval=False, n_replay_epochs=1, max_slice_length=1, sync_freq=1000, scale_value_targets=True, output_dir=None, **kwargs)

	Bases: trax.rl.training.Agent

Trainer that uses a deep learning model for value function.

Compute the loss using variants of the Bellman equation.

	
__init__(task, value_body=None, value_optimizer=None, value_lr_schedule=<function multifactor>, value_batch_size=64, value_train_steps_per_epoch=500, value_evals_per_epoch=1, value_eval_steps=1, exploration_rate=functools.partial(<function multifactor>, factors='constant * decay_every', constant=1.0, decay_factor=0.99, steps_per_decay=1, minimum=0.1), n_eval_episodes=0, only_eval=False, n_replay_epochs=1, max_slice_length=1, sync_freq=1000, scale_value_targets=True, output_dir=None, **kwargs)

	Configures the value trainer.

	Parameters

	
	task – RLTask instance, which defines the environment to train on.

	value_body – Trax layer, representing the body of the value model.
functions and eval functions (a.k.a. metrics) are considered to be
outside the core model, taking core model output and data labels as
their two inputs.

	value_optimizer – the optimizer to use to train the policy model.

	value_lr_schedule – learning rate schedule to use to train the policy.

	value_batch_size – batch size used to train the policy model.

	value_train_steps_per_epoch – how long to train policy in each RL epoch.

	value_evals_per_epoch – number of policy trainer evaluations per RL epoch
- only affects metric reporting.

	value_eval_steps – number of policy trainer steps per evaluation - only
affects metric reporting.

	exploration_rate – exploration rate schedule - used in the policy method.

	n_eval_episodes – number of episodes to play with policy at
temperature 0 in each epoch – used for evaluation only

	only_eval – If set to True, then trajectories are collected only for
for evaluation purposes, but they are not recorded.

	n_replay_epochs – Number of last epochs to take into the replay buffer;
only makes sense for off-policy algorithms.

	max_slice_length – the maximum length of trajectory slices to use; it is
the second dimenions of the value network output:
(batch, max_slice_length, number of actions)
Higher max_slice_length implies that the network has to predict more
values into the future.

	sync_freq – frequency when to synchronize the target
network with the trained network. This is necessary for training the
network on bootstrapped targets, e.g. using n-step returns.

	scale_value_targets – If True, scale value function targets by
1 / (1 - gamma). We are trying to fix the problem with very large
returns in some games in a way which does not introduce an additional
hyperparameters.

	output_dir – Path telling where to save outputs (evals and checkpoints).

	**kwargs – arguments for the superclass RLTrainer.

	
value_batches_stream()

	Use self.task to create inputs to the policy model.

	
policy(trajectory, temperature=1)

	Chooses an action to play after a trajectory.

	
train_epoch()

	Trains RL for one epoch.

	
close()

	

	
value_mean

	The mean value of actions selected by the behavioral policy.

	
returns_mean

	The mean value of actions selected by the behavioral policy.

	
class trax.rl.training.DQN(task, advantage_estimator=<function monte_carlo>, max_slice_length=1, smoothl1loss=True, double_dqn=False, **kwargs)

	Bases: trax.rl.training.ValueAgent

Trains a value model using DQN on the given RLTask.

Notice that the algorithm and the parameters signficantly diverge from
the original DQN paper. In particular we have separated learning and data
collection.

The Bellman loss is computed in the value_loss method. The formula takes
the state-action values tensors Q and n-step returns R:

\[L(s,a) = Q(s,a) - R(s,a)\]

where R is computed in value_batches_stream. In the simplest case of the
1-step returns we are getting

\[L(s,a) = Q(s,a) - r(s,a) - gamma * \max_{a'} Q'(s',a')\]

where s’ is the state reached after taking action a in state s, Q’ is
the target network, gamma is the discount factor and the maximum is taken
with respect to all actions avaliable in the state s’. The tensor Q’ is
updated using the sync_freq parameter.

In code the maximum is visible in the policy method where we take
sample = jnp.argmax(values). The epsilon-greedy policy is taking a random
move with probability epsilon and oterhwise in state s it takes the
action argmax_a Q(s,a).

	
__init__(task, advantage_estimator=<function monte_carlo>, max_slice_length=1, smoothl1loss=True, double_dqn=False, **kwargs)

	Configures the value trainer.

	Parameters

	
	task – RLTask instance, which defines the environment to train on.

	value_body – Trax layer, representing the body of the value model.
functions and eval functions (a.k.a. metrics) are considered to be
outside the core model, taking core model output and data labels as
their two inputs.

	value_optimizer – the optimizer to use to train the policy model.

	value_lr_schedule – learning rate schedule to use to train the policy.

	value_batch_size – batch size used to train the policy model.

	value_train_steps_per_epoch – how long to train policy in each RL epoch.

	value_evals_per_epoch – number of policy trainer evaluations per RL epoch
- only affects metric reporting.

	value_eval_steps – number of policy trainer steps per evaluation - only
affects metric reporting.

	exploration_rate – exploration rate schedule - used in the policy method.

	n_eval_episodes – number of episodes to play with policy at
temperature 0 in each epoch – used for evaluation only

	only_eval – If set to True, then trajectories are collected only for
for evaluation purposes, but they are not recorded.

	n_replay_epochs – Number of last epochs to take into the replay buffer;
only makes sense for off-policy algorithms.

	max_slice_length – the maximum length of trajectory slices to use; it is
the second dimenions of the value network output:
(batch, max_slice_length, number of actions)
Higher max_slice_length implies that the network has to predict more
values into the future.

	sync_freq – frequency when to synchronize the target
network with the trained network. This is necessary for training the
network on bootstrapped targets, e.g. using n-step returns.

	scale_value_targets – If True, scale value function targets by
1 / (1 - gamma). We are trying to fix the problem with very large
returns in some games in a way which does not introduce an additional
hyperparameters.

	output_dir – Path telling where to save outputs (evals and checkpoints).

	**kwargs – arguments for the superclass RLTrainer.

	
value_loss

	Value loss computed using smooth L1 loss or L2 loss.

	
value_batches_stream()

	Use the RLTask self._task to create inputs to the value model.

	
policy(trajectory, temperature=1)

	Chooses an action to play after a trajectory.

	
value_mean

	The mean value of actions selected by the behavioral policy.

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 trax	

 	
 	
 trax.data.inputs	

 	
 	
 trax.data.tf_inputs	

 	
 	
 trax.fastmath.ops	

 	
 	
 trax.layers.acceleration	

 	
 	
 trax.layers.activation_fns	

 	
 	
 trax.layers.attention	

 	
 	
 trax.layers.base	

 	
 	
 trax.layers.combinators	

 	
 	
 trax.layers.convolution	

 	
 	
 trax.layers.core	

 	
 	
 trax.layers.initializers	

 	
 	
 trax.layers.metrics	

 	
 	
 trax.layers.normalization	

 	
 	
 trax.layers.pooling	

 	
 	
 trax.layers.research.efficient_attention	

 	
 	
 trax.layers.research.position_encodings	

 	
 	
 trax.layers.reversible	

 	
 	
 trax.layers.rnn	

 	
 	
 trax.models.atari_cnn	

 	
 	
 trax.models.mlp	

 	
 	
 trax.models.neural_gpu	

 	
 	
 trax.models.reformer.reformer	

 	
 	
 trax.models.research.bert	

 	
 	
 trax.models.resnet	

 	
 	
 trax.models.rl	

 	
 	
 trax.models.rnn	

 	
 	
 trax.models.transformer	

 	
 	
 trax.optimizers.adafactor	

 	
 	
 trax.optimizers.adam	

 	
 	
 trax.optimizers.base	

 	
 	
 trax.optimizers.momentum	

 	
 	
 trax.optimizers.rms_prop	

 	
 	
 trax.optimizers.sm3	

 	
 	
 trax.rl.actor_critic	

 	
 	
 trax.rl.actor_critic_joint	

 	
 	
 trax.rl.advantages	

 	
 	
 trax.rl.distributions	

 	
 	
 trax.rl.normalization	

 	
 	
 trax.rl.rl_layers	

 	
 	
 trax.rl.serialization_utils	

 	
 	
 trax.rl.space_serializer	

 	
 	
 trax.rl.task	

 	
 	
 trax.rl.training	

 	
 	
 trax.rl_trainer	

 	
 	
 trax.shapes	

 	
 	
 trax.supervised.decoding	

 	
 	
 trax.supervised.lr_schedules	

 	
 	
 trax.supervised.training	

 	
 	
 trax.trainer	

 	
 	
 trax.trax2keras	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__call__() (trax.layers.base.Layer method)

 	__init__() (trax.data.inputs.Inputs method)

 	(trax.layers.acceleration.Accelerate method)

 	(trax.layers.attention.DotProductAttention method)

 	(trax.layers.attention.DotProductCausalAttention method)

 	(trax.layers.attention.PositionalEncoding method)

 	(trax.layers.attention.PureAttention method)

 	(trax.layers.base.Layer method)

 	(trax.layers.base.LayerError method)

 	(trax.layers.base.PureLayer method)

 	(trax.layers.combinators.BatchLeadingAxes method)

 	(trax.layers.combinators.Cache method)

 	(trax.layers.combinators.Concatenate method)

 	(trax.layers.combinators.Cond method)

 	(trax.layers.combinators.Parallel method)

 	(trax.layers.combinators.Scan method)

 	(trax.layers.combinators.Serial method)

 	(trax.layers.combinators.Split method)

 	(trax.layers.convolution.CausalConv method)

 	(trax.layers.convolution.Conv method)

 	(trax.layers.core.Dense method)

 	(trax.layers.core.Dropout method)

 	(trax.layers.core.Embedding method)

 	(trax.layers.core.LocallyConnected1d method)

 	(trax.layers.core.RandomUniform method)

 	(trax.layers.core.SummaryImage method)

 	(trax.layers.core.SummaryScalar method)

 	(trax.layers.core.Weights method)

 	(trax.layers.normalization.BatchNorm method)

 	(trax.layers.normalization.FilterResponseNorm method)

 	(trax.layers.normalization.LayerNorm method)

 	(trax.layers.research.efficient_attention.EfficientAttentionBase method)

 	(trax.layers.research.efficient_attention.EncDecAttention method)

 	(trax.layers.research.efficient_attention.LSHFF method)

 	(trax.layers.research.efficient_attention.LSHSelfAttention method)

 	(trax.layers.research.efficient_attention.MixedLSHSelfAttention method)

 	(trax.layers.research.efficient_attention.PureLSHSelfAttention method)

 	(trax.layers.research.efficient_attention.PureLSHSelfAttentionWrapper method)

 	(trax.layers.research.efficient_attention.SelfAttention method)

 	(trax.layers.research.position_encodings.AxialPositionalEncoding method)

 	(trax.layers.research.position_encodings.FixedBasePositionalEncoding method)

 	(trax.layers.research.position_encodings.InfinitePositionalEncoding method)

 	(trax.layers.research.position_encodings.SinCosPositionalEncoding method)

 	(trax.layers.research.position_encodings.TimeBinPositionalEncoding method)

 	(trax.layers.reversible.ReversibleConcatenatePair method)

 	(trax.layers.reversible.ReversibleHalfResidual method)

 	(trax.layers.reversible.ReversiblePrintShape method)

 	(trax.layers.reversible.ReversibleReshape method)

 	(trax.layers.reversible.ReversibleSelect method)

 	(trax.layers.reversible.ReversibleSerial method)

 	(trax.layers.rnn.GRUCell method)

 	(trax.layers.rnn.LSTMCell method)

 	(trax.models.research.bert.PretrainedBERT method)

 	(trax.optimizers.adafactor.Adafactor method)

 	(trax.optimizers.adam.Adam method)

 	(trax.optimizers.base.Optimizer method)

 	(trax.optimizers.momentum.Momentum method)

 	(trax.optimizers.rms_prop.RMSProp method)

 	(trax.optimizers.sm3.SM3 method)

 	(trax.rl.actor_critic.A2C method)

 	(trax.rl.actor_critic.AWR method)

 	(trax.rl.actor_critic.ActorCriticAgent method)

 	(trax.rl.actor_critic.AdvantageBasedActorCriticAgent method)

 	(trax.rl.actor_critic.LoopAWR method)

 	(trax.rl.actor_critic.LoopActorCriticAgent method)

 	(trax.rl.actor_critic.PPO method)

 	(trax.rl.actor_critic.SamplingAWR method)

 	(trax.rl.actor_critic_joint.A2CJoint method)

 	(trax.rl.actor_critic_joint.AWRJoint method)

 	(trax.rl.actor_critic_joint.ActorCriticJointAgent method)

 	(trax.rl.actor_critic_joint.PPOJoint method)

 	(trax.rl.serialization_utils.SerializedModel method)

 	(trax.rl.space_serializer.DiscreteSpaceSerializer method)

 	(trax.rl.space_serializer.MultiDiscreteSpaceSerializer method)

 	(trax.rl.space_serializer.SpaceSerializer method)

 	(trax.rl.task.Trajectory method)

 	(trax.rl.training.Agent method)

 	(trax.rl.training.DQN method)

 	(trax.rl.training.ExpertIteration method)

 	(trax.rl.training.LoopPolicyAgent method)

 	(trax.rl.training.PolicyAgent method)

 	(trax.rl.training.PolicyGradient method)

 	(trax.rl.training.ValueAgent method)

 	(trax.shapes.ShapeDtype method)

 	(trax.supervised.training.Loop method)

 	(trax.trax2keras.AsKeras method)

A

 	
 	A2C (class in trax.rl.actor_critic)

 	a2c_objective (trax.rl.actor_critic_joint.A2CJoint attribute)

 	a2c_objective_mean (trax.rl.actor_critic_joint.A2CJoint attribute)

 	A2CJoint (class in trax.rl.actor_critic_joint)

 	A2CObjective() (in module trax.rl.rl_layers)

 	abstract_eval() (in module trax.fastmath.ops)

 	Accelerate (class in trax.layers.acceleration)

 	Accuracy() (in module trax.layers.metrics)

 	action (trax.rl.task.TimeStepBatch attribute)

 	action_serializer (trax.rl.serialization_utils.SerializedModel attribute)

 	ActorCriticAgent (class in trax.rl.actor_critic)

 	ActorCriticJointAgent (class in trax.rl.actor_critic_joint)

 	Adafactor (class in trax.optimizers.adafactor)

 	Adam (class in trax.optimizers.adam)

 	Add() (in module trax.layers.combinators)

 	add_eos_to_output_features() (in module trax.data.tf_inputs)

 	add_loss_weights() (in module trax.data.inputs)

 	AddBias (class in trax.models.research.bert)

 	addition_input_stream() (in module trax.data.inputs)

 	addition_inputs() (in module trax.data.inputs)

 	AddLossWeights() (in module trax.data.inputs)

 	advantage_mean (trax.rl.actor_critic.AdvantageBasedActorCriticAgent attribute)

 	(trax.rl.actor_critic_joint.ActorCriticJointAgent attribute)

 	advantage_norm (trax.rl.actor_critic_joint.ActorCriticJointAgent attribute)

 	advantage_std (trax.rl.actor_critic.AdvantageBasedActorCriticAgent attribute)

 	AdvantageBasedActorCriticAgent (class in trax.rl.actor_critic)

 	Agent (class in trax.rl.training)

 	analyze_action_space() (in module trax.rl.serialization_utils)

 	
 	AppendValue() (in module trax.data.inputs)

 	apply_broadcasted_dropout() (in module trax.layers.research.efficient_attention)

 	approximate_kl_divergence (trax.rl.actor_critic_joint.A2CJoint attribute)

 	(trax.rl.actor_critic_joint.PPOJoint attribute)

 	ApproximateKLDivergence() (in module trax.rl.rl_layers)

 	ArgMax() (in module trax.layers.core)

 	as_tuple() (trax.shapes.ShapeDtype method)

 	AsKeras (class in trax.trax2keras)

 	assert_same_shape() (in module trax.shapes)

 	assert_shape_equals() (in module trax.shapes)

 	AtariCnn() (in module trax.models.atari_cnn)

 	AtariCnnBody() (in module trax.models.atari_cnn)

 	AtariConvInit() (in module trax.layers.initializers)

 	attend() (in module trax.layers.research.efficient_attention)

 	Attention() (in module trax.layers.attention)

 	AttentionQKV() (in module trax.layers.attention)

 	autoregressive_sample() (in module trax.supervised.decoding)

 	autoregressive_sample_stream() (in module trax.supervised.decoding)

 	avg_pool() (in module trax.fastmath.ops)

 	avg_returns (trax.rl.training.Agent attribute)

 	AvgPool() (in module trax.layers.pooling)

 	AWR (class in trax.rl.actor_critic)

 	awr_metrics() (in module trax.rl.actor_critic)

 	awr_weight_stat() (in module trax.rl.actor_critic)

 	awr_weights() (in module trax.rl.actor_critic)

 	AWRJoint (class in trax.rl.actor_critic_joint)

 	AWRLoss() (in module trax.rl.actor_critic)

 	AxialPositionalEncoding (class in trax.layers.research.position_encodings)

B

 	
 	Backend (class in trax.fastmath.ops)

 	backend() (in module trax.fastmath.ops)

 	backend_name() (in module trax.fastmath.ops)

 	backward() (trax.layers.base.Layer method)

 	(trax.layers.research.efficient_attention.EfficientAttentionBase method)

 	(trax.layers.research.efficient_attention.LSHSelfAttention method)

 	(trax.layers.research.efficient_attention.PureLSHSelfAttention method)

 	(trax.layers.research.efficient_attention.SelfAttention method)

 	(trax.layers.reversible.ReversibleLayer method)

 	bair_robot_pushing_hparams() (in module trax.data.tf_inputs)

 	bair_robot_pushing_preprocess() (in module trax.data.tf_inputs)

 	Batch() (in module trax.data.inputs)

 	batch() (in module trax.data.inputs)

 	batch_fn() (in module trax.data.inputs)

 	batcher() (in module trax.data.inputs)

 	batches_stream() (trax.rl.actor_critic_joint.A2CJoint method)

 	(trax.rl.actor_critic_joint.AWRJoint method)

 	(trax.rl.actor_critic_joint.ActorCriticJointAgent method)

 	(trax.rl.actor_critic_joint.PPOJoint method)

 	BatchLeadingAxes (class in trax.layers.combinators)

 	
 	BatchNorm (class in trax.layers.normalization)

 	beam_search() (in module trax.supervised.decoding)

 	bernoulli() (trax.fastmath.ops.RandomBackend method)

 	BERT() (in module trax.models.research.bert)

 	BERTClassifierHead() (in module trax.models.research.bert)

 	BertDoubleSentenceInputs() (in module trax.data.tf_inputs)

 	BertGlueEvalStream() (in module trax.data.tf_inputs)

 	BertGlueTrainStream() (in module trax.data.tf_inputs)

 	BERTMLMHead() (in module trax.models.research.bert)

 	BertNextSentencePredictionInputs() (in module trax.data.tf_inputs)

 	BERTPretrainingHead() (in module trax.models.research.bert)

 	BERTPretrainingLoss() (in module trax.models.research.bert)

 	BERTRegressionHead() (in module trax.models.research.bert)

 	BertSingleSentenceInputs() (in module trax.data.tf_inputs)

 	BinaryCrossEntropy() (in module trax.layers.metrics)

 	BinaryCrossEntropyLoss() (in module trax.layers.metrics)

 	BinaryCrossEntropySum() (in module trax.layers.metrics)

 	Branch() (in module trax.layers.combinators)

 	bucket_by_length() (in module trax.data.inputs)

 	BucketByLength() (in module trax.data.inputs)

 	build() (trax.trax2keras.AsKeras method)

C

 	
 	c4_bare_preprocess_fn() (in module trax.data.tf_inputs)

 	c4_preprocess() (in module trax.data.tf_inputs)

 	Cache (class in trax.layers.combinators)

 	calculate_returns() (trax.rl.task.Trajectory method)

 	call() (trax.trax2keras.AsKeras method)

 	CastTo() (in module trax.data.inputs)

 	CategoryAccuracy() (in module trax.layers.metrics)

 	CategoryCrossEntropy() (in module trax.layers.metrics)

 	CausalAttention() (in module trax.layers.attention)

 	CausalConv (class in trax.layers.convolution)

 	Chunk() (in module trax.layers.combinators)

 	cifar10_augmentation_flatten_preprocess() (in module trax.data.tf_inputs)

 	cifar10_augmentation_preprocess() (in module trax.data.tf_inputs)

 	cifar10_no_augmentation_preprocess() (in module trax.data.tf_inputs)

 	clip_fraction (trax.rl.actor_critic_joint.PPOJoint attribute)

 	clip_grads() (in module trax.optimizers.base)

 	clipped_objective_mean (trax.rl.actor_critic_joint.PPOJoint attribute)

 	ClippedObjective() (in module trax.rl.rl_layers)

 	close() (trax.rl.actor_critic.ActorCriticAgent method)

 	(trax.rl.actor_critic_joint.ActorCriticJointAgent method)

 	(trax.rl.training.Agent method)

 	(trax.rl.training.PolicyAgent method)

 	(trax.rl.training.ValueAgent method)

 	compute_nums() (in module trax.data.tf_inputs)

 	compute_ops() (in module trax.data.tf_inputs)

 	compute_program() (in module trax.data.tf_inputs)

 	compute_result() (in module trax.data.tf_inputs)

 	compute_single_result() (in module trax.data.tf_inputs)

 	concat_preprocess() (in module trax.data.tf_inputs)

 	Concatenate (class in trax.layers.combinators)

 	ConcatenateToLMInput() (in module trax.data.inputs)

 	Cond (class in trax.layers.combinators)

 	cond() (in module trax.fastmath.ops)

 	ConfigurableAttention() (in module trax.layers.attention)

 	constant() (in module trax.supervised.lr_schedules)

 	
 	consume_noise_mask() (in module trax.data.inputs)

 	control_mask (trax.rl.task.EnvInfo attribute)

 	Conv (class in trax.layers.convolution)

 	conv() (in module trax.fastmath.ops)

 	Conv1d() (in module trax.layers.convolution)

 	ConvBlock() (in module trax.models.resnet)

 	ConvDiagonalGRU() (in module trax.models.neural_gpu)

 	convert_float_to_mathqa() (in module trax.data.tf_inputs)

 	convert_to_subtract() (in module trax.data.tf_inputs)

 	ConvertToUnicode() (in module trax.data.tf_inputs)

 	ConvGRUCell() (in module trax.layers.rnn)

 	CorpusToRandomChunks() (in module trax.data.tf_inputs)

 	count_and_skip() (in module trax.data.inputs)

 	CountAndSkip() (in module trax.data.inputs)

 	create() (in module trax.rl.space_serializer)

 	create_distribution() (in module trax.rl.distributions)

 	create_state_unbatched() (trax.layers.research.efficient_attention.EfficientAttentionBase method)

 	(trax.layers.research.efficient_attention.LSHSelfAttention method)

 	(trax.layers.research.efficient_attention.PureLSHSelfAttention method)

 	(trax.layers.research.efficient_attention.SelfAttention method)

 	create_weights_unbatched() (trax.layers.research.efficient_attention.EfficientAttentionBase method)

 	(trax.layers.research.efficient_attention.EncDecAttention method)

 	(trax.layers.research.efficient_attention.LSHSelfAttention method)

 	(trax.layers.research.efficient_attention.SelfAttention method)

 	CreateAnnotatedDropInputs() (in module trax.data.tf_inputs)

 	CreateAquaInputs() (in module trax.data.tf_inputs)

 	CreateBertInputs() (in module trax.data.tf_inputs)

 	CreateDropInputs() (in module trax.data.tf_inputs)

 	CreateMathQAInputs() (in module trax.data.tf_inputs)

 	CrossEntropyLoss() (in module trax.layers.metrics)

 	CrossEntropyLossWithLogSoftmax() (in module trax.layers.metrics)

 	CrossEntropySum() (in module trax.layers.metrics)

 	current_epoch (trax.rl.training.Agent attribute)

 	custom_grad() (in module trax.fastmath.ops)

 	custom_vjp() (in module trax.fastmath.ops)

D

 	
 	data_streams() (in module trax.data.tf_inputs)

 	dataset_as_numpy() (in module trax.fastmath.ops)

 	dataset_to_stream() (in module trax.data.tf_inputs)

 	DecoderBlock() (in module trax.models.reformer.reformer)

 	Deinterleave() (in module trax.rl.serialization_utils)

 	Dense (class in trax.layers.core)

 	deserialize() (trax.rl.space_serializer.DiscreteSpaceSerializer method)

 	(trax.rl.space_serializer.MultiDiscreteSpaceSerializer method)

 	(trax.rl.space_serializer.SpaceSerializer method)

 	detokenize() (in module trax.data.tf_inputs)

 	DiagonalGate() (in module trax.models.neural_gpu)

 	disable_jit() (in module trax.fastmath.ops)

 	discount_mask (trax.rl.task.EnvInfo attribute)

 	discounted_returns() (in module trax.rl.advantages)

 	DiscreteSpaceSerializer (class in trax.rl.space_serializer)

 	dist_inputs (trax.rl.task.TimeStepBatch attribute)

 	
 	Distribution (class in trax.rl.distributions)

 	done (trax.rl.task.TimeStepBatch attribute)

 	(trax.rl.task.Trajectory attribute)

 	DotProductAttention (class in trax.layers.attention)

 	DotProductCausalAttention (class in trax.layers.attention)

 	download_and_prepare() (in module trax.data.tf_inputs)

 	download_model() (trax.models.research.bert.PretrainedBERT class method)

 	downsampled_imagenet_flatten_bare_preprocess() (in module trax.data.tf_inputs)

 	DQN (class in trax.rl.training)

 	Drop() (in module trax.layers.combinators)

 	Dropout (class in trax.layers.core)

 	dtype (trax.shapes.ShapeDtype attribute)

 	Dup() (in module trax.layers.combinators)

 	dynamic_slice() (in module trax.fastmath.ops)

 	dynamic_slice_in_dim() (in module trax.fastmath.ops)

 	dynamic_update_slice() (in module trax.fastmath.ops)

 	dynamic_update_slice_in_dim() (in module trax.fastmath.ops)

E

 	
 	EfficientAttentionBase (class in trax.layers.research.efficient_attention)

 	Elu() (in module trax.layers.activation_fns)

 	EMA (trax.optimizers.sm3.MomentumType attribute)

 	Embedding (class in trax.layers.core)

 	EncDecAttention (class in trax.layers.research.efficient_attention)

 	EncoderBlock() (in module trax.models.reformer.reformer)

 	EncoderDecoderBlock() (in module trax.models.reformer.reformer)

 	EncoderDecoderMask() (in module trax.layers.attention)

 	entropy_loss (trax.rl.actor_critic_joint.A2CJoint attribute)

 	(trax.rl.actor_critic_joint.PPOJoint attribute)

 	EntropyLoss() (in module trax.rl.rl_layers)

 	env_info (trax.rl.task.TimeStepBatch attribute)

 	
 	EnvInfo (class in trax.rl.task)

 	erf() (in module trax.fastmath.ops)

 	eval_model (trax.supervised.training.Loop attribute)

 	eval_stream() (trax.data.inputs.Inputs method)

 	eval_tasks (trax.supervised.training.Loop attribute)

 	every() (in module trax.rl.actor_critic)

 	example_shape_dtype (trax.data.inputs.Inputs attribute)

 	Exp() (in module trax.layers.activation_fns)

 	ExpertIteration (class in trax.rl.training)

 	expit() (in module trax.fastmath.ops)

 	explained_variance (trax.rl.actor_critic_joint.ActorCriticJointAgent attribute)

 	ExplainedVariance() (in module trax.rl.rl_layers)

 	extend() (trax.rl.task.Trajectory method)

F

 	
 	FastGelu() (in module trax.layers.activation_fns)

 	filter_dataset_on_len() (in module trax.data.tf_inputs)

 	FilterByLength() (in module trax.data.inputs)

 	FilterEmptyExamples() (in module trax.data.inputs)

 	FilterResponseNorm (class in trax.layers.normalization)

 	FixedBasePositionalEncoding (class in trax.layers.research.position_encodings)

 	Flatten() (in module trax.layers.core)

 	flatten_weights_and_state() (in module trax.layers.base)

 	FlattenList() (in module trax.layers.combinators)

 	Fn() (in module trax.layers.base)

 	fold_in() (trax.fastmath.ops.RandomBackend method)

 	for_n_devices() (in module trax.layers.acceleration)

 	fori_loop() (in module trax.fastmath.ops)

 	forward() (trax.layers.activation_fns.ThresholdedLinearUnit method)

 	(trax.layers.attention.DotProductAttention method)

 	(trax.layers.attention.DotProductCausalAttention method)

 	(trax.layers.attention.PositionalEncoding method)

 	(trax.layers.attention.PureAttention method)

 	(trax.layers.base.Layer method)

 	(trax.layers.base.PureLayer method)

 	(trax.layers.combinators.BatchLeadingAxes method)

 	(trax.layers.combinators.Cache method)

 	(trax.layers.combinators.Concatenate method)

 	(trax.layers.combinators.Cond method)

 	(trax.layers.combinators.Parallel method)

 	(trax.layers.combinators.Scan method)

 	(trax.layers.combinators.Serial method)

 	(trax.layers.combinators.Split method)

 	(trax.layers.convolution.CausalConv method)

 	(trax.layers.convolution.Conv method)

 	(trax.layers.core.Dense method)

 	(trax.layers.core.Dropout method)

 	(trax.layers.core.Embedding method)

 	(trax.layers.core.LocallyConnected1d method)

 	(trax.layers.core.RandomUniform method)

 	(trax.layers.core.SummaryImage method)

 	(trax.layers.core.SummaryScalar method)

 	(trax.layers.core.Weights method)

 	(trax.layers.normalization.BatchNorm method)

 	(trax.layers.normalization.FilterResponseNorm method)

 	(trax.layers.normalization.LayerNorm method)

 	(trax.layers.research.efficient_attention.EfficientAttentionBase method)

 	(trax.layers.research.efficient_attention.LSHFF method)

 	(trax.layers.research.efficient_attention.LSHSelfAttention method)

 	(trax.layers.research.efficient_attention.MixedLSHSelfAttention method)

 	(trax.layers.research.efficient_attention.PureLSHSelfAttention method)

 	(trax.layers.research.efficient_attention.SelfAttention method)

 	(trax.layers.research.position_encodings.AxialPositionalEncoding method)

 	(trax.layers.research.position_encodings.FixedBasePositionalEncoding method)

 	(trax.layers.research.position_encodings.InfinitePositionalEncoding method)

 	(trax.layers.research.position_encodings.SinCosPositionalEncoding method)

 	(trax.layers.research.position_encodings.TimeBinPositionalEncoding method)

 	(trax.layers.reversible.ReversibleConcatenatePair method)

 	(trax.layers.reversible.ReversibleHalfResidual method)

 	(trax.layers.reversible.ReversiblePrintShape method)

 	(trax.layers.reversible.ReversibleReshape method)

 	(trax.layers.reversible.ReversibleSelect method)

 	(trax.layers.rnn.GRUCell method)

 	(trax.layers.rnn.LSTMCell method)

 	(trax.models.research.bert.AddBias method)

 	
 	forward_and_or_backward() (trax.layers.research.efficient_attention.EfficientAttentionBase method)

 	(trax.layers.research.efficient_attention.LSHSelfAttention method)

 	(trax.layers.research.efficient_attention.MixedLSHSelfAttention method)

 	(trax.layers.research.efficient_attention.PureLSHSelfAttention method)

 	(trax.layers.research.efficient_attention.PureLSHSelfAttentionWrapper method)

 	(trax.layers.research.efficient_attention.SelfAttention method)

 	forward_unbatched() (trax.layers.research.efficient_attention.EfficientAttentionBase method)

 	(trax.layers.research.efficient_attention.EncDecAttention method)

 	(trax.layers.research.efficient_attention.LSHSelfAttention method)

 	(trax.layers.research.efficient_attention.PureLSHSelfAttention method)

 	(trax.layers.research.efficient_attention.SelfAttention method)

 	FrameStackMLP() (in module trax.models.atari_cnn)

G

 	
 	gae() (in module trax.rl.advantages)

 	Gate() (in module trax.layers.combinators)

 	Gelu() (in module trax.layers.activation_fns)

 	GeneralGRUCell() (in module trax.layers.rnn)

 	generate_random_noise_mask() (in module trax.data.inputs)

 	generate_sequential_chunks() (in module trax.data.inputs)

 	generic_text_dataset_preprocess_fn() (in module trax.data.tf_inputs)

 	get_prng() (trax.fastmath.ops.RandomBackend method)

 	
 	get_t5_preprocessor_by_name() (in module trax.data.tf_inputs)

 	global_device_count() (in module trax.fastmath.ops)

 	GlorotNormalInitializer() (in module trax.layers.initializers)

 	GlorotUniformInitializer() (in module trax.layers.initializers)

 	Glu() (in module trax.layers.activation_fns)

 	grad() (in module trax.fastmath.ops)

 	GRU() (in module trax.layers.rnn)

 	GRUCell (class in trax.layers.rnn)

 	GRULM() (in module trax.models.rnn)

H

 	
 	HardSigmoid() (in module trax.layers.activation_fns)

 	HardTanh() (in module trax.layers.activation_fns)

 	has_backward (trax.layers.base.Layer attribute)

 	(trax.layers.research.efficient_attention.EfficientAttentionBase attribute)

 	(trax.layers.research.efficient_attention.LSHSelfAttention attribute)

 	(trax.layers.research.efficient_attention.PureLSHSelfAttention attribute)

 	(trax.layers.research.efficient_attention.SelfAttention attribute)

 	(trax.layers.reversible.ReversibleLayer attribute)

 	
 	hash_vecs() (in module trax.layers.research.efficient_attention)

 	hash_vectors() (trax.layers.research.efficient_attention.LSHSelfAttention method)

 	(trax.layers.research.efficient_attention.PureLSHSelfAttention method)

 	HEAVY_BALL (trax.optimizers.sm3.MomentumType attribute)

 	history (trax.supervised.training.Loop attribute)

I

 	
 	IdentityBlock() (in module trax.models.resnet)

 	index_add() (in module trax.fastmath.ops)

 	index_max() (in module trax.fastmath.ops)

 	index_min() (in module trax.fastmath.ops)

 	index_update() (in module trax.fastmath.ops)

 	InfinitePositionalEncoding (class in trax.layers.research.position_encodings)

 	init() (trax.layers.acceleration.Accelerate method)

 	(trax.layers.base.Layer method)

 	(trax.optimizers.adafactor.Adafactor method)

 	(trax.optimizers.adam.Adam method)

 	(trax.optimizers.base.Optimizer method)

 	(trax.optimizers.base.SGD method)

 	(trax.optimizers.momentum.Momentum method)

 	(trax.optimizers.rms_prop.RMSProp method)

 	(trax.optimizers.sm3.SM3 method)

 	init_from_file() (trax.layers.base.Layer method)

 	(trax.rl.training.Agent method)

 	init_host_and_devices() (in module trax.supervised.training)

 	init_weights_and_state() (trax.layers.activation_fns.ThresholdedLinearUnit method)

 	(trax.layers.attention.DotProductCausalAttention method)

 	(trax.layers.attention.PositionalEncoding method)

 	(trax.layers.base.Layer method)

 	(trax.layers.combinators.BatchLeadingAxes method)

 	(trax.layers.combinators.Cache method)

 	(trax.layers.combinators.Cond method)

 	(trax.layers.combinators.Parallel method)

 	(trax.layers.combinators.Scan method)

 	(trax.layers.combinators.Serial method)

 	(trax.layers.convolution.Conv method)

 	(trax.layers.core.Dense method)

 	(trax.layers.core.Dropout method)

 	(trax.layers.core.Embedding method)

 	(trax.layers.core.LocallyConnected1d method)

 	(trax.layers.core.SummaryImage method)

 	(trax.layers.core.SummaryScalar method)

 	(trax.layers.core.Weights method)

 	(trax.layers.normalization.BatchNorm method)

 	(trax.layers.normalization.FilterResponseNorm method)

 	(trax.layers.normalization.LayerNorm method)

 	(trax.layers.research.efficient_attention.EfficientAttentionBase method)

 	(trax.layers.research.efficient_attention.LSHFF method)

 	(trax.layers.research.efficient_attention.LSHSelfAttention method)

 	(trax.layers.research.efficient_attention.MixedLSHSelfAttention method)

 	(trax.layers.research.efficient_attention.PureLSHSelfAttention method)

 	(trax.layers.research.efficient_attention.SelfAttention method)

 	(trax.layers.research.position_encodings.AxialPositionalEncoding method)

 	(trax.layers.research.position_encodings.FixedBasePositionalEncoding method)

 	(trax.layers.research.position_encodings.InfinitePositionalEncoding method)

 	(trax.layers.research.position_encodings.SinCosPositionalEncoding method)

 	(trax.layers.research.position_encodings.TimeBinPositionalEncoding method)

 	(trax.layers.reversible.ReversibleHalfResidual method)

 	(trax.layers.rnn.GRUCell method)

 	(trax.layers.rnn.LSTMCell method)

 	(trax.models.research.bert.AddBias method)

 	(trax.models.research.bert.PretrainedBERT method)

 	
 	InitializerFromFile() (in module trax.layers.initializers)

 	InnerSRUCell() (in module trax.layers.rnn)

 	input_dtype (trax.data.inputs.Inputs attribute)

 	input_shape (trax.data.inputs.Inputs attribute)

 	Inputs (class in trax.data.inputs)

 	inputs_from_stack() (in module trax.layers.combinators)

 	Interleave() (in module trax.rl.serialization_utils)

 	is_backend() (in module trax.fastmath.ops)

 	is_chief (trax.supervised.training.Loop attribute)

J

 	
 	JAX (trax.fastmath.ops.Backend attribute)

 	jit() (in module trax.fastmath.ops)

 	jit_forward() (in module trax.layers.acceleration)

 	
 	joint_loss (trax.rl.actor_critic_joint.A2CJoint attribute)

 	(trax.rl.actor_critic_joint.AWRJoint attribute)

 	(trax.rl.actor_critic_joint.ActorCriticJointAgent attribute)

 	(trax.rl.actor_critic_joint.PPOJoint attribute)

K

 	
 	KaimingNormalInitializer() (in module trax.layers.initializers)

 	
 	KaimingUniformInitializer() (in module trax.layers.initializers)

L

 	
 	l2_norm() (in module trax.optimizers.base)

 	L2Loss() (in module trax.layers.metrics)

 	last_observation (trax.rl.task.Trajectory attribute)

 	Layer (class in trax.layers.base)

 	LayerError

 	LayerNorm (class in trax.layers.normalization)

 	LayerNormSquash() (in module trax.rl.normalization)

 	LeakyRelu() (in module trax.layers.activation_fns)

 	LeCunNormalInitializer() (in module trax.layers.initializers)

 	LeCunUniformInitializer() (in module trax.layers.initializers)

 	length_normalized() (in module trax.layers.research.efficient_attention)

 	lm1b_preprocess() (in module trax.data.tf_inputs)

 	lm_token_preprocessing() (in module trax.data.tf_inputs)

 	load_checkpoint() (trax.supervised.training.Loop method)

 	load_data_counters() (in module trax.data.inputs)

 	local_device_count() (in module trax.fastmath.ops)

 	LocallyConnected1d (class in trax.layers.core)

 	Log() (in module trax.data.inputs)

 	(in module trax.layers.activation_fns)

 	log_gaussian_diag_pdf() (in module trax.layers.core)

 	log_gaussian_pdf() (in module trax.layers.core)

 	log_prob() (trax.rl.distributions.Distribution method)

 	
 	log_probs_mean (trax.rl.actor_critic_joint.ActorCriticJointAgent attribute)

 	log_softmax() (in module trax.layers.core)

 	log_summary() (trax.supervised.training.Loop method)

 	LogLoss() (in module trax.rl.distributions)

 	LogProb() (trax.rl.distributions.Distribution method)

 	LogSoftmax() (in module trax.layers.core)

 	logsoftmax_sample() (in module trax.layers.core)

 	logsumexp() (in module trax.fastmath.ops)

 	LogSumExp() (in module trax.layers.core)

 	look_adjacent() (in module trax.layers.research.efficient_attention)

 	Loop (class in trax.supervised.training)

 	loop (trax.rl.actor_critic.LoopActorCriticAgent attribute)

 	(trax.rl.training.LoopPolicyAgent attribute)

 	LoopActorCriticAgent (class in trax.rl.actor_critic)

 	LoopAWR (class in trax.rl.actor_critic)

 	LoopPolicyAgent (class in trax.rl.training)

 	lower_endian_to_number() (in module trax.data.inputs)

 	LSHFF (class in trax.layers.research.efficient_attention)

 	LSHSelfAttention (class in trax.layers.research.efficient_attention)

 	LSTM() (in module trax.layers.rnn)

 	LSTMCell (class in trax.layers.rnn)

 	LSTMSeq2SeqAttn() (in module trax.models.rnn)

 	lt() (in module trax.fastmath.ops)

M

 	
 	MacroAveragedFScore() (in module trax.layers.metrics)

 	main() (in module trax.rl_trainer)

 	(in module trax.trainer)

 	make_additional_stream() (in module trax.data.inputs)

 	make_inputs() (in module trax.data.inputs)

 	make_parallel_stream() (in module trax.data.inputs)

 	make_predict_model() (trax.rl.serialization_utils.SerializedModel method)

 	MakeZeroState() (in module trax.layers.rnn)

 	map() (in module trax.fastmath.ops)

 	mask (trax.rl.task.TimeStepBatch attribute)

 	mask_discount() (in module trax.rl.advantages)

 	mask_random_tokens() (in module trax.data.tf_inputs)

 	mask_self_attention() (in module trax.layers.research.efficient_attention)

 	MaskedSequenceAccuracy() (in module trax.layers.metrics)

 	Max() (in module trax.layers.core)

 	max_pool() (in module trax.fastmath.ops)

 	
 	MaxPool() (in module trax.layers.pooling)

 	Mean() (in module trax.layers.core)

 	mean_or_pmean() (in module trax.layers.acceleration)

 	MergeHeads() (in module trax.layers.attention)

 	message (trax.layers.base.LayerError attribute)

 	Min() (in module trax.layers.core)

 	MixedLSHSelfAttention (class in trax.layers.research.efficient_attention)

 	MLM() (in module trax.data.inputs)

 	MLP() (in module trax.models.mlp)

 	model (trax.supervised.training.Loop attribute)

 	Momentum (class in trax.optimizers.momentum)

 	MomentumType (class in trax.optimizers.sm3)

 	monte_carlo() (in module trax.rl.advantages)

 	MultiDiscreteSpaceSerializer (class in trax.rl.space_serializer)

 	multifactor() (in module trax.supervised.lr_schedules)

 	multigaussian_loss() (in module trax.layers.core)

 	Multiply() (in module trax.layers.combinators)

N

 	
 	n_devices (trax.supervised.training.Loop attribute)

 	n_in (trax.layers.base.Layer attribute)

 	n_inputs (trax.rl.distributions.Distribution attribute)

 	n_out (trax.layers.base.Layer attribute)

 	name (trax.layers.base.Layer attribute)

 	Negate() (in module trax.layers.core)

 	NESTEROV (trax.optimizers.sm3.MomentumType attribute)

 	network_policy() (in module trax.rl.training)

 	NeuralGPU() (in module trax.models.neural_gpu)

 	new_rng() (trax.supervised.training.Loop method)

 	
 	NewLogProbs() (in module trax.rl.rl_layers)

 	no_preprocess() (in module trax.data.tf_inputs)

 	normal() (trax.fastmath.ops.RandomBackend method)

 	np_from_file() (in module trax.layers.base)

 	np_to_file() (in module trax.layers.base)

 	num_features (trax.layers.research.position_encodings.TimeBinPositionalEncoding attribute)

 	number_to_lower_endian() (in module trax.data.inputs)

 	numpy (in module trax.fastmath.ops)

 	NUMPY (trax.fastmath.ops.Backend attribute)

 	NumpyBackend (class in trax.fastmath.ops)

O

 	
 	observation (trax.rl.task.TimeStepBatch attribute)

 	observation_serializer (trax.rl.serialization_utils.SerializedModel attribute)

 	on_accelerator() (in module trax.layers.acceleration)

 	on_cpu() (in module trax.layers.acceleration)

 	on_policy (trax.rl.actor_critic.A2C attribute)

 	(trax.rl.actor_critic.AWR attribute)

 	(trax.rl.actor_critic.ActorCriticAgent attribute)

 	(trax.rl.actor_critic.LoopAWR attribute)

 	(trax.rl.actor_critic.LoopActorCriticAgent attribute)

 	(trax.rl.actor_critic.PPO attribute)

 	(trax.rl.actor_critic.SamplingAWR attribute)

 	(trax.rl.actor_critic_joint.A2CJoint attribute)

 	(trax.rl.actor_critic_joint.PPOJoint attribute)

 	
 	one_hot() (in module trax.layers.core)

 	opt_params (trax.optimizers.base.Optimizer attribute)

 	Optimizer (class in trax.optimizers.base)

 	OrthogonalInitializer() (in module trax.layers.initializers)

 	output_dir (trax.supervised.training.Loop attribute)

 	output_signature() (trax.layers.base.Layer method)

 	outputs_onto_stack() (in module trax.layers.combinators)

P

 	
 	pad_dataset_to_length() (in module trax.data.tf_inputs)

 	pad_to_max_dims() (in module trax.data.inputs)

 	PaddingMask() (in module trax.layers.attention)

 	PadToLength() (in module trax.data.inputs)

 	Parallel (class in trax.layers.combinators)

 	Parallel() (in module trax.data.inputs)

 	ParametricRelu() (in module trax.layers.activation_fns)

 	permute_via_gather() (in module trax.layers.research.efficient_attention)

 	permute_via_sort() (in module trax.layers.research.efficient_attention)

 	pickle_to_file() (in module trax.supervised.training)

 	play() (in module trax.rl.task)

 	pmap() (in module trax.fastmath.ops)

 	Policy() (in module trax.models.rl)

 	policy() (trax.rl.actor_critic.LoopActorCriticAgent method)

 	(trax.rl.actor_critic_joint.ActorCriticJointAgent method)

 	(trax.rl.training.Agent method)

 	(trax.rl.training.DQN method)

 	(trax.rl.training.ExpertIteration method)

 	(trax.rl.training.PolicyAgent method)

 	(trax.rl.training.PolicyGradient method)

 	(trax.rl.training.ValueAgent method)

 	policy_batches_stream() (trax.rl.actor_critic.ActorCriticAgent method)

 	(trax.rl.actor_critic.SamplingAWR method)

 	(trax.rl.training.PolicyAgent method)

 	policy_inputs() (trax.rl.actor_critic.ActorCriticAgent method)

 	(trax.rl.actor_critic.AdvantageBasedActorCriticAgent method)

 	policy_loss (trax.rl.actor_critic.AdvantageBasedActorCriticAgent attribute)

 	(trax.rl.actor_critic.SamplingAWR attribute)

 	(trax.rl.training.PolicyAgent attribute)

 	policy_loss_given_log_probs (trax.rl.actor_critic.A2C attribute)

 	(trax.rl.actor_critic.AWR attribute)

 	(trax.rl.actor_critic.AdvantageBasedActorCriticAgent attribute)

 	(trax.rl.actor_critic.PPO attribute)

 	
 	policy_metrics (trax.rl.actor_critic.AdvantageBasedActorCriticAgent attribute)

 	(trax.rl.actor_critic.SamplingAWR attribute)

 	(trax.rl.training.PolicyAgent attribute)

 	PolicyAgent (class in trax.rl.training)

 	PolicyAndValue() (in module trax.models.rl)

 	PolicyGradient (class in trax.rl.training)

 	PositionalEncoding (class in trax.layers.attention)

 	PPO (class in trax.rl.actor_critic)

 	ppo_objective (trax.rl.actor_critic_joint.PPOJoint attribute)

 	ppo_objective_mean (trax.rl.actor_critic_joint.PPOJoint attribute)

 	PPOJoint (class in trax.rl.actor_critic_joint)

 	PPOObjective() (in module trax.rl.rl_layers)

 	preferred_move (trax.rl.actor_critic_joint.ActorCriticJointAgent attribute)

 	PreferredMove() (in module trax.rl.rl_layers)

 	Prefetch() (in module trax.data.inputs)

 	PrefixLM() (in module trax.data.inputs)

 	PretrainedBERT (class in trax.models.research.bert)

 	PrintShape() (in module trax.layers.core)

 	probs_ratio_mean (trax.rl.actor_critic_joint.PPOJoint attribute)

 	ProbsRatio() (in module trax.rl.rl_layers)

 	process_single_mathqa_example() (in module trax.data.tf_inputs)

 	psum() (in module trax.fastmath.ops)

 	pure_fn() (trax.layers.acceleration.Accelerate method)

 	(trax.layers.base.Layer method)

 	PureAttention (class in trax.layers.attention)

 	PureLayer (class in trax.layers.base)

 	PureLSHSelfAttention (class in trax.layers.research.efficient_attention)

 	PureLSHSelfAttentionWrapper (class in trax.layers.research.efficient_attention)

Q

 	
 	Quality() (in module trax.models.rl)

R

 	
 	randint() (trax.fastmath.ops.RandomBackend method)

 	random_inputs() (in module trax.data.inputs)

 	random_number_lower_endian() (in module trax.data.inputs)

 	random_spans_noise_mask() (in module trax.data.inputs)

 	RandomBackend (class in trax.fastmath.ops)

 	RandomNormalInitializer() (in module trax.layers.initializers)

 	RandomUniform (class in trax.layers.core)

 	RandomUniformInitializer() (in module trax.layers.initializers)

 	RawPolicy() (in module trax.rl.serialization_utils)

 	read_values() (in module trax.trax2keras)

 	Reformer() (in module trax.models.reformer.reformer)

 	ReformerLM() (in module trax.models.reformer.reformer)

 	ReformerShortenLM() (in module trax.models.reformer.reformer)

 	Relu() (in module trax.layers.activation_fns)

 	remaining_evals() (in module trax.rl.training)

 	remat() (in module trax.fastmath.ops)

 	replace() (trax.shapes.ShapeDtype method)

 	replicate_state() (trax.layers.acceleration.Accelerate method)

 	replicate_weights() (trax.layers.acceleration.Accelerate method)

 	representation_length (trax.rl.space_serializer.DiscreteSpaceSerializer attribute)

 	(trax.rl.space_serializer.MultiDiscreteSpaceSerializer attribute)

 	(trax.rl.space_serializer.SpaceSerializer attribute)

 	RepresentationMask() (in module trax.rl.serialization_utils)

 	reshape_by_device() (in module trax.layers.acceleration)

 	Residual() (in module trax.layers.combinators)

 	Resnet50() (in module trax.models.resnet)

 	return_ (trax.rl.task.TimeStepBatch attribute)

 	returns_mean (trax.rl.training.ValueAgent attribute)

 	reverse() (trax.layers.reversible.ReversibleConcatenatePair method)

 	(trax.layers.reversible.ReversibleHalfResidual method)

 	(trax.layers.reversible.ReversibleLayer method)

 	(trax.layers.reversible.ReversiblePrintShape method)

 	(trax.layers.reversible.ReversibleReshape method)

 	(trax.layers.reversible.ReversibleSelect method)

 	(trax.layers.reversible.ReversibleSerial method)

 	
 	reverse_and_grad() (trax.layers.reversible.ReversibleHalfResidual method)

 	(trax.layers.reversible.ReversibleLayer method)

 	(trax.layers.reversible.ReversibleSerial method)

 	ReversibleConcatenatePair (class in trax.layers.reversible)

 	ReversibleHalfResidual (class in trax.layers.reversible)

 	ReversibleLayer (class in trax.layers.reversible)

 	ReversiblePrintShape (class in trax.layers.reversible)

 	ReversibleReshape (class in trax.layers.reversible)

 	ReversibleSelect (class in trax.layers.reversible)

 	ReversibleSerial (class in trax.layers.reversible)

 	ReversibleSwap() (in module trax.layers.reversible)

 	reward (trax.rl.task.TimeStepBatch attribute)

 	RMSProp (class in trax.optimizers.rms_prop)

 	rng (trax.layers.base.Layer attribute)

 	RNNLM() (in module trax.models.rnn)

 	run() (trax.rl.training.Agent method)

 	(trax.supervised.training.Loop method)

 	run_evals() (trax.supervised.training.Loop method)

 	running_mean_and_variance_get_count() (in module trax.rl.normalization)

 	running_mean_and_variance_get_mean() (in module trax.rl.normalization)

 	running_mean_and_variance_get_variance() (in module trax.rl.normalization)

 	running_mean_and_variance_init() (in module trax.rl.normalization)

 	running_mean_and_variance_update() (in module trax.rl.normalization)

 	running_mean_get_count() (in module trax.rl.normalization)

 	running_mean_get_mean() (in module trax.rl.normalization)

 	running_mean_init() (in module trax.rl.normalization)

 	running_mean_update() (in module trax.rl.normalization)

S

 	
 	sample() (trax.rl.distributions.Distribution method)

 	SamplingAWR (class in trax.rl.actor_critic)

 	SamplingAWRLoss() (in module trax.rl.actor_critic)

 	SaturationCost() (in module trax.models.neural_gpu)

 	save_checkpoint() (trax.supervised.training.Loop method)

 	save_data_counters() (in module trax.data.inputs)

 	save_gin() (trax.rl.training.Agent method)

 	save_to_file() (trax.layers.base.Layer method)

 	(trax.rl.training.Agent method)

 	ScaledInitializer() (in module trax.layers.initializers)

 	Scan (class in trax.layers.combinators)

 	scan() (in module trax.fastmath.ops)

 	Select() (in module trax.layers.combinators)

 	SelfAttention (class in trax.layers.research.efficient_attention)

 	Selu() (in module trax.layers.activation_fns)

 	sentencepiece_tokenize() (in module trax.data.tf_inputs)

 	SentencePieceTokenize() (in module trax.data.tf_inputs)

 	seq_model_state (trax.rl.serialization_utils.SerializedModel attribute)

 	seq_model_weights (trax.rl.serialization_utils.SerializedModel attribute)

 	sequence_copy_inputs() (in module trax.data.inputs)

 	SequenceAccuracy() (in module trax.layers.metrics)

 	Serial (class in trax.layers.combinators)

 	Serial() (in module trax.data.inputs)

 	Serialize() (in module trax.rl.serialization_utils)

 	serialize() (trax.rl.space_serializer.DiscreteSpaceSerializer method)

 	(trax.rl.space_serializer.MultiDiscreteSpaceSerializer method)

 	(trax.rl.space_serializer.SpaceSerializer method)

 	SerializedModel (class in trax.rl.serialization_utils)

 	SerializedPolicy() (in module trax.rl.serialization_utils)

 	SerialWithSideOutputs() (in module trax.layers.combinators)

 	set_backend() (in module trax.fastmath.ops)

 	SGD (class in trax.optimizers.base)

 	shape (trax.shapes.ShapeDtype attribute)

 	ShapeDtype (class in trax.shapes)

 	shard() (in module trax.layers.base)

 	sharpened_network_policy() (in module trax.rl.training)

 	ShiftRight() (in module trax.layers.attention)

 	Shuffle() (in module trax.data.inputs)

 	shuffle() (in module trax.data.inputs)

 	sigmoid() (in module trax.fastmath.ops)

 	Sigmoid() (in module trax.layers.activation_fns)

 	signature() (in module trax.shapes)

 	significance_map (trax.rl.space_serializer.DiscreteSpaceSerializer attribute)

 	(trax.rl.space_serializer.MultiDiscreteSpaceSerializer attribute)

 	(trax.rl.space_serializer.SpaceSerializer attribute)

 	
 	SignificanceWeights() (in module trax.rl.serialization_utils)

 	simple_sequence_copy_inputs() (in module trax.data.inputs)

 	SinCosPositionalEncoding (class in trax.layers.research.position_encodings)

 	sine_inputs() (in module trax.data.inputs)

 	single_op_to_python_command() (in module trax.data.tf_inputs)

 	slots (trax.optimizers.base.Optimizer attribute)

 	SM3 (class in trax.optimizers.sm3)

 	SmoothL1Loss() (in module trax.layers.metrics)

 	Softmax() (in module trax.layers.core)

 	Softplus() (in module trax.layers.activation_fns)

 	sort_key_val() (in module trax.fastmath.ops)

 	space_type (trax.rl.space_serializer.DiscreteSpaceSerializer attribute)

 	(trax.rl.space_serializer.MultiDiscreteSpaceSerializer attribute)

 	(trax.rl.space_serializer.SpaceSerializer attribute)

 	SpaceSerializer (class in trax.rl.space_serializer)

 	splice_signatures() (in module trax.shapes)

 	Split (class in trax.layers.combinators)

 	split() (trax.fastmath.ops.RandomBackend method)

 	SplitIntoHeads() (in module trax.layers.attention)

 	squeeze_targets_preprocess() (in module trax.data.tf_inputs)

 	SRU() (in module trax.layers.rnn)

 	state (trax.layers.acceleration.Accelerate attribute)

 	(trax.layers.base.Layer attribute)

 	(trax.layers.combinators.Cache attribute)

 	(trax.layers.combinators.Scan attribute)

 	step (trax.supervised.training.Loop attribute)

 	stop_gradient() (in module trax.fastmath.ops)

 	StopGradient() (in module trax.layers.core)

 	sublayer (trax.layers.acceleration.Accelerate attribute)

 	(trax.layers.combinators.BatchLeadingAxes attribute)

 	(trax.layers.combinators.Cache attribute)

 	(trax.layers.combinators.Scan attribute)

 	sublayers (trax.layers.base.Layer attribute)

 	substitute_inner_policy() (in module trax.rl.serialization_utils)

 	substitute_inner_policy_raw() (in module trax.rl.serialization_utils)

 	substitute_inner_policy_serialized() (in module trax.rl.serialization_utils)

 	SubtractTop() (in module trax.layers.combinators)

 	suffix() (trax.rl.task.Trajectory method)

 	Sum() (in module trax.layers.core)

 	sum_pool() (in module trax.fastmath.ops)

 	SummaryImage (class in trax.layers.core)

 	SummaryScalar (class in trax.layers.core)

 	SumPool() (in module trax.layers.pooling)

 	Swap() (in module trax.layers.combinators)

 	Swish() (in module trax.layers.activation_fns)

T

 	
 	t2t_problems() (in module trax.data.tf_inputs)

 	T5GlueEvalStream() (in module trax.data.tf_inputs)

 	T5GlueEvalStreamsParallel() (in module trax.data.tf_inputs)

 	T5GlueEvalTasks() (in module trax.data.tf_inputs)

 	T5GlueTrainStream() (in module trax.data.tf_inputs)

 	T5GlueTrainStreamsParallel() (in module trax.data.tf_inputs)

 	Tanh() (in module trax.layers.activation_fns)

 	target_dtype (trax.data.inputs.Inputs attribute)

 	target_shape (trax.data.inputs.Inputs attribute)

 	task (trax.rl.training.Agent attribute)

 	tasks (trax.supervised.training.Loop attribute)

 	td_k() (in module trax.rl.advantages)

 	td_lambda() (in module trax.rl.advantages)

 	tensor_shapes_to_shape_dtypes() (in module trax.trax2keras)

 	tf_init_tpu() (in module trax.trainer)

 	TFDS() (in module trax.data.tf_inputs)

 	TFNP (trax.fastmath.ops.Backend attribute)

 	threefry_2x32_prange() (in module trax.layers.research.position_encodings)

 	threefry_2x32_prf() (in module trax.layers.research.position_encodings)

 	ThresholdedLinearUnit (class in trax.layers.activation_fns)

 	ThresholdToBinary() (in module trax.layers.core)

 	TimeBinPositionalEncoding (class in trax.layers.research.position_encodings)

 	TimeSeriesModel() (in module trax.rl.serialization_utils)

 	TimeStepBatch (class in trax.rl.task)

 	timesteps (trax.rl.task.Trajectory attribute)

 	to_arrays() (in module trax.trax2keras)

 	to_list() (in module trax.layers.base)

 	to_np() (trax.rl.task.Trajectory method)

 	to_tensors() (in module trax.trax2keras)

 	ToFloat() (in module trax.layers.core)

 	Tokenize() (in module trax.data.tf_inputs)

 	tokenize() (in module trax.data.tf_inputs)

 	top_k() (in module trax.fastmath.ops)

 	total_return (trax.rl.task.Trajectory attribute)

 	train_epoch() (trax.rl.actor_critic.ActorCriticAgent method)

 	(trax.rl.actor_critic.LoopActorCriticAgent method)

 	(trax.rl.actor_critic_joint.ActorCriticJointAgent method)

 	(trax.rl.training.Agent method)

 	(trax.rl.training.LoopPolicyAgent method)

 	(trax.rl.training.PolicyAgent method)

 	(trax.rl.training.ValueAgent method)

 	train_eval_stream() (trax.data.inputs.Inputs method)

 	train_rl() (in module trax.rl_trainer)

 	train_stream() (trax.data.inputs.Inputs method)

 	Trajectory (class in trax.rl.task)

 	Transformer() (in module trax.models.transformer)

 	TransformerDecoder() (in module trax.models.transformer)

 	TransformerEncoder() (in module trax.models.transformer)

 	TransformerLM() (in module trax.models.transformer)

 	trax.data.inputs (module)

 	trax.data.tf_inputs (module)

 	
 	trax.fastmath.ops (module)

 	trax.layers.acceleration (module)

 	trax.layers.activation_fns (module)

 	trax.layers.attention (module)

 	trax.layers.base (module)

 	trax.layers.combinators (module)

 	trax.layers.convolution (module)

 	trax.layers.core (module)

 	trax.layers.initializers (module)

 	trax.layers.metrics (module)

 	trax.layers.normalization (module)

 	trax.layers.pooling (module)

 	trax.layers.research.efficient_attention (module)

 	trax.layers.research.position_encodings (module)

 	trax.layers.reversible (module)

 	trax.layers.rnn (module)

 	trax.models.atari_cnn (module)

 	trax.models.mlp (module)

 	trax.models.neural_gpu (module)

 	trax.models.reformer.reformer (module)

 	trax.models.research.bert (module)

 	trax.models.resnet (module)

 	trax.models.rl (module)

 	trax.models.rnn (module)

 	trax.models.transformer (module)

 	trax.optimizers.adafactor (module)

 	trax.optimizers.adam (module)

 	trax.optimizers.base (module)

 	trax.optimizers.momentum (module)

 	trax.optimizers.rms_prop (module)

 	trax.optimizers.sm3 (module)

 	trax.rl.actor_critic (module)

 	trax.rl.actor_critic_joint (module)

 	trax.rl.advantages (module)

 	trax.rl.distributions (module)

 	trax.rl.normalization (module)

 	trax.rl.rl_layers (module)

 	trax.rl.serialization_utils (module)

 	trax.rl.space_serializer (module)

 	trax.rl.task (module)

 	trax.rl.training (module)

 	trax.rl_trainer (module)

 	trax.shapes (module)

 	trax.supervised.decoding (module)

 	trax.supervised.lr_schedules (module)

 	trax.supervised.training (module)

 	trax.trainer (module)

 	trax.trax2keras (module)

 	tree_init() (trax.optimizers.base.Optimizer method)

 	tree_update() (trax.optimizers.base.Optimizer method)

 	truncate_dataset_on_len() (in module trax.data.tf_inputs)

 	TruncateToLength() (in module trax.data.inputs)

U

 	
 	UnBatch() (in module trax.data.inputs)

 	unclipped_objective_mean (trax.rl.actor_critic_joint.PPOJoint attribute)

 	UnclippedObjective() (in module trax.rl.rl_layers)

 	unflatten_weights_and_state() (in module trax.layers.base)

 	uniform() (trax.fastmath.ops.RandomBackend method)

 	UniformlySeek() (in module trax.data.inputs)

 	unpickle_from_file() (in module trax.supervised.training)

 	unshard() (in module trax.layers.base)

 	unshard_in_pmap() (in module trax.layers.base)

 	
 	update() (trax.optimizers.adafactor.Adafactor method)

 	(trax.optimizers.adam.Adam method)

 	(trax.optimizers.base.Optimizer method)

 	(trax.optimizers.base.SGD method)

 	(trax.optimizers.momentum.Momentum method)

 	(trax.optimizers.rms_prop.RMSProp method)

 	(trax.optimizers.sm3.SM3 method)

 	update_weights_and_state() (trax.supervised.training.Loop method)

 	use_backend() (in module trax.fastmath.ops)

V

 	
 	Value() (in module trax.models.rl)

 	value_and_grad() (in module trax.fastmath.ops)

 	value_batches_stream() (trax.rl.actor_critic.ActorCriticAgent method)

 	(trax.rl.training.DQN method)

 	(trax.rl.training.ValueAgent method)

 	value_loss (trax.rl.actor_critic_joint.ActorCriticJointAgent attribute)

 	(trax.rl.training.DQN attribute)

 	value_mean (trax.rl.actor_critic.ActorCriticAgent attribute)

 	(trax.rl.training.DQN attribute)

 	(trax.rl.training.ValueAgent attribute)

 	
 	ValueAgent (class in trax.rl.training)

 	ValueLoss() (in module trax.rl.rl_layers)

 	vjp() (in module trax.fastmath.ops)

 	vmap() (in module trax.fastmath.ops)

 	vocab_size (trax.rl.space_serializer.SpaceSerializer attribute)

 	vocab_size() (in module trax.data.tf_inputs)

W

 	
 	warmup() (in module trax.supervised.lr_schedules)

 	warmup_and_rsqrt_decay() (in module trax.supervised.lr_schedules)

 	WeightedCategoryAccuracy() (in module trax.layers.metrics)

 	WeightedCategoryCrossEntropy() (in module trax.layers.metrics)

 	WeightedFScore() (in module trax.layers.metrics)

 	WeightedSum() (in module trax.layers.metrics)

 	Weights (class in trax.layers.core)

 	weights (trax.layers.acceleration.Accelerate attribute)

 	(trax.layers.base.Layer attribute)

 	
 	weights_and_state_signature() (trax.layers.base.Layer method)

 	WideResnet() (in module trax.models.resnet)

 	WideResnetBlock() (in module trax.models.resnet)

 	WideResnetGroup() (in module trax.models.resnet)

 	wmt_concat_preprocess() (in module trax.data.tf_inputs)

 	wmt_preprocess() (in module trax.data.tf_inputs)

 	wrap_policy() (in module trax.rl.serialization_utils)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Trax Tutorials

 		
 Trax Quick Intro

 		
 1. Run a pre-trained Transformer

 		
 2. Features and resources

 		
 3. Walkthrough

 		
 Tensors and Fast Math

 		
 Layers

 		
 Models

 		
 Data

 		
 Supervised training

 		
 Trax Layers Intro

 		
 1. Layers

 		
 Layers compute functions.

 		
 Layers are configurable.

 		
 Layers are trainable.

 		
 Layers combine into layers.

 		
 2. Inputs and Outputs

 		
 Data Stack

 		
 3. Defining New Layer Classes

 		
 With the Fn layer-creating function.

 		
 By defining a Layer subclass

 		
 By defining a Combinator subclass

 		
 4. Testing and Debugging Layer Classes

 		
 Using Trax with TensorFlow NumPy and Keras

 		
 1. Trax with TensorFlow NumPy

 		
 2. Convert Trax to Keras

 		
 3. Exporting Trax Models for Deployment

 		
 trax.*

 		
 fastmath.*

 		
 ops

 		
 layers.*

 		
 acceleration

 		
 activation_fns

 		
 attention

 		
 base

 		
 combinators

 		
 convolution

 		
 core

 		
 initializers

 		
 metrics

 		
 normalization

 		
 pooling

 		
 reversible

 		
 rnn

 		
 research.efficient_attention

 		
 research.position_encodings

 		
 models.*

 		
 atari_cnn

 		
 mlp

 		
 neural_gpu

 		
 resnet

 		
 rl

 		
 rnn

 		
 transformer

 		
 reformer.reformer

 		
 research.bert

 		
 research.skipping_transformer

 		
 data.*

 		
 inputs

 		
 tf_inputs

 		
 optimizers.*

 		
 adafactor

 		
 adam

 		
 base

 		
 momentum

 		
 rms_prop

 		
 sm3

 		
 supervised.*

 		
 decoding

 		
 lr_schedules

 		
 training

 		
 rl.*

 		
 actor_critic

 		
 actor_critic_joint

 		
 advantages

 		
 distributions

 		
 normalization

 		
 rl_layers

 		
 serialization_utils

 		
 space_serializer

 		
 task

 		
 training

 		
 shapes

 		
 trainer

 		
 rl_trainer

 		
 trax2keras

_static/up-pressed.png

_static/up.png

_static/plus.png

